*These are updates. Original version from Corey Sparks, Ph.D. can be found here.
This lab complements the Lab 2 exercise using QGIS.
Here, we use tidycensus to read some tract data, learn
its projection information, transform it to a new coordinate system, and
measure some distance between features.
library(tidycensus)
library(sf)
## Linking to GEOS 3.9.3, GDAL 3.5.2, PROJ 8.2.1; sf_use_s2() is TRUE
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
Note: you can run quietly=T after any
library command to remove the messages in the white boxes
with ## in your output, e.g.,
library(sf, quietly=T)
(Seem familiar? We did this chunk below before in Lab 1/Homework 2.)
sa_acs<-get_acs(geography = "tract",
state="TX",
county = c("Bexar"),
year = 2019,
variables=c( "DP05_0001E",
"DP03_0119PE") ,
geometry = T, output = "wide")
## Getting data from the 2015-2019 5-year ACS
## Downloading feature geometry from the Census website. To cache shapefiles for use in future sessions, set `options(tigris_use_cache = TRUE)`.
## Using the ACS Data Profile
#create a county FIPS code - 5 digit
sa_acs$county<-substr(sa_acs$GEOID, 1, 5)
#rename variables and filter missing cases
sa_acs2<-sa_acs%>%
mutate(totpop= DP05_0001E, ppov=DP03_0119PE) %>%
# st_transform(crs = 102740)%>%
na.omit()
See Coordinate Systems, Projections, and Transformations from ArcGIS Pro/ESRI for more information about these concepts.
st_crs(sa_acs2)
## Coordinate Reference System:
## User input: NAD83
## wkt:
## GEOGCRS["NAD83",
## DATUM["North American Datum 1983",
## ELLIPSOID["GRS 1980",6378137,298.257222101,
## LENGTHUNIT["metre",1]]],
## PRIMEM["Greenwich",0,
## ANGLEUNIT["degree",0.0174532925199433]],
## CS[ellipsoidal,2],
## AXIS["latitude",north,
## ORDER[1],
## ANGLEUNIT["degree",0.0174532925199433]],
## AXIS["longitude",east,
## ORDER[2],
## ANGLEUNIT["degree",0.0174532925199433]],
## ID["EPSG",4269]]
We see these tracts are in a Geographic Coordinate System (GCS) called North American Datum 1983 (NAD83).
library(tmap)
library(tmaptools)
tm_shape(sa_acs2)+
tm_polygons("ppov", title="% in Poverty",
palette="Blues",
style="quantile",
n=5 )+
tm_format("World",
main.title="San Antonio Poverty Estimates (2019) - Quintile Breaks",
main.title.position=c('center','top'),
main.title.size=1.5,
title="Author: Julia Kay Wolf, Ph.D. \nSource: ACS 2019",
legend.title.size=1.7,
legend.outside=T,
legend.text.size=1.2)+
tm_scale_bar(position = c("left","bottom"))+
tm_compass()
Click here
for more tmap aesthetic features.
Click here for a quick discussion on quantile vs. quintile.
(Remember 2278 from the QGIS portion of Lab 2?)
Find other coordinate references here.
new_sa<-st_transform(sa_acs2, crs = 2278)
#Extract two tracts
twtr<-new_sa%>%
filter(GEOID %in% c(48029181820, 48029110600))
# get centroid coordinates for two tracts (these two tracts are where UTSA Main and Downtown Campuses are)
tr_co<-st_centroid(twtr)
## Warning in st_centroid.sf(twtr): st_centroid assumes attributes are constant
## over geometries of x
head(tr_co)
## Simple feature collection with 2 features and 9 fields
## Geometry type: POINT
## Dimension: XY
## Bounding box: xmin: 2090862 ymin: 13704280 xmax: 2125261 ymax: 13758300
## Projected CRS: NAD83 / Texas South Central (ftUS)
## GEOID NAME DP05_0001E DP05_0001M
## 1 48029181820 Census Tract 1818.20, Bexar County, Texas 8305 833
## 2 48029110600 Census Tract 1106, Bexar County, Texas 5293 423
## DP03_0119PE DP03_0119PM geometry county totpop ppov
## 1 15.2 9.1 POINT (2090862 13758297) 48029 8305 15.2
## 2 37.8 15.2 POINT (2125261 13704278) 48029 5293 37.8
st_distance(tr_co)
## Units: [US_survey_foot]
## 1 2
## 1 0.00 64041.12
## 2 64041.12 0.00
64041.12/5280 #To get feet into miles
## [1] 12.129
(Remember in QGIS we got 12.13 miles?)
This is another way to do the above task, by running a QGIS algorithm
within R using the qgisprocess package.
NOTE: The qgisprocess will not install on its own
with this 4.2.2 version of R.
See the vignette here for more on what this package is and some examples. See here to explain the following chunk for installing it.
install.packages("remotes")
remotes::install_github("paleolimbot/qgisprocess") #Select 1 for ALL; next there will be a pop-up box, select Yes.
library(qgisprocess) #load the package
## Using 'qgis_process' at 'C:/Program Files/QGIS 3.28.2/bin/qgis_process-qgis.bat'.
## QGIS version: 3.28.2-Firenze
## Configuration loaded from 'C:\Users\xee291\AppData\Local/R-qgisprocess/R-qgisprocess/Cache/cache-0.0.0.9000.rds'
## Run `qgis_configure(use_cached_data = TRUE)` to reload cache and get more details.
## >>> If you need another installed QGIS version, run `qgis_configure()`;
## see its documentation if you need to preset the path of qgis_process.
## - Using JSON for input serialization.
## - Using JSON for output serialization.
qgis_configure() #set up QGIS - find the executable
## getOption('qgisprocess.path') was not found.
## Sys.getenv('R_QGISPROCESS_PATH') was not found.
## Trying 'qgis_process' on PATH...
## 'qgis_process' is not available on PATH.
## Found 1 QGIS installation containing 'qgis_process':
## C:/Program Files/QGIS 3.28.2/bin/qgis_process-qgis.bat
## Trying command 'C:/Program Files/QGIS 3.28.2/bin/qgis_process-qgis.bat'
## Success!
## QGIS version: 3.28.2-Firenze
## Saving configuration to 'C:\Users\xee291\AppData\Local/R-qgisprocess/R-qgisprocess/Cache/cache-0.0.0.9000.rds'
## Metadata of 1169 algorithms queried and stored in cache.
## Run `qgis_algorithms()` to see them.
## - Using JSON for input serialization.
## - Using JSON for output serialization.
# qgis_algorithms() lists all the available routines in QGIS
head(qgis_algorithms())
## # A tibble: 6 × 27
## provider provi…¹ algor…² algor…³ algor…⁴ provi…⁵ can_c…⁶ depre…⁷ group has_k…⁸
## <chr> <chr> <chr> <chr> <chr> <chr> <lgl> <lgl> <chr> <lgl>
## 1 3d QGIS (… 3d:tes… tessel… Tessel… 3d TRUE FALSE Vect… FALSE
## 2 gdal GDAL gdal:a… aspect Aspect gdal TRUE FALSE Rast… FALSE
## 3 gdal GDAL gdal:a… assign… Assign… gdal TRUE FALSE Rast… FALSE
## 4 gdal GDAL gdal:b… buffer… Buffer… gdal TRUE FALSE Vect… FALSE
## 5 gdal GDAL gdal:b… buildv… Build … gdal TRUE FALSE Rast… FALSE
## 6 gdal GDAL gdal:b… buildv… Build … gdal TRUE FALSE Vect… FALSE
## # … with 17 more variables: help_url <chr>, name <chr>,
## # requires_matching_crs <lgl>, short_description <chr>, tags <list>,
## # provider_can_be_activated <lgl>, default_raster_file_extension <chr>,
## # default_vector_file_extension <chr>, provider_is_active <lgl>,
## # provider_long_name <chr>, provider_name <chr>,
## # supported_output_raster_extensions <list>,
## # supported_output_table_extensions <list>, …
We can use grep to search for specific terms in the
algorithms.
algs<-qgis_algorithms()
algs[grep(x = algs$algorithm, "distance"),"algorithm"]
## # A tibble: 24 × 1
## algorithm
## <chr>
## 1 gdal:gridinversedistance
## 2 gdal:gridinversedistancenearestneighbor
## 3 grass7:r.distance
## 4 grass7:r.grow.distance
## 5 grass7:v.distance
## 6 grass7:v.net.distance
## 7 native:extractwithindistance
## 8 native:segmentizebymaxdistance
## 9 qgis:distancematrix
## 10 qgis:distancetonearesthublinetohub
## # … with 14 more rows
qgis_show_help("qgis:distancematrix")
## Distance matrix (qgis:distancematrix)
##
## ----------------
## Description
## ----------------
## This algorithm creates a table containing a distance matrix, with distances between all the points in a points layer.
##
##
## ----------------
## Arguments
## ----------------
##
## INPUT: Input point layer
## Argument type: source
## Acceptable values:
## - Path to a vector layer
## INPUT_FIELD: Input unique ID field
## Argument type: field
## Acceptable values:
## - The name of an existing field
## - ; delimited list of existing field names
## TARGET: Target point layer
## Argument type: source
## Acceptable values:
## - Path to a vector layer
## TARGET_FIELD: Target unique ID field
## Argument type: field
## Acceptable values:
## - The name of an existing field
## - ; delimited list of existing field names
## MATRIX_TYPE: Output matrix type
## Default value: 0
## Argument type: enum
## Available values:
## - 0: Linear (N*k x 3) distance matrix
## - 1: Standard (N x T) distance matrix
## - 2: Summary distance matrix (mean, std. dev., min, max)
## Acceptable values:
## - Number of selected option, e.g. '1'
## - Comma separated list of options, e.g. '1,3'
## NEAREST_POINTS: Use only the nearest (k) target points
## Default value: 0
## Argument type: number
## Acceptable values:
## - A numeric value
## OUTPUT: Distance matrix
## Argument type: sink
## Acceptable values:
## - Path for new vector layer
##
## ----------------
## Outputs
## ----------------
##
## OUTPUT: <outputVector>
## Distance matrix
out = qgis_run_algorithm(alg = "qgis:distancematrix",
INPUT = tr_co[1,],
INPUT_FIELD = "GEOID",
TARGET = tr_co[2,],
TARGET_FIELD = "GEOID",
MATRIX_TYPE = 0,
NEAREST_POINTS = 1)
## Using `OUTPUT = qgis_tmp_vector()`
## JSON input ----
## {
## "inputs": {
## "INPUT": "C:\\Users\\xee291\\AppData\\Local\\Temp\\RtmpWqGTBy\\file30d81a8870e5\\file30d818075f3b.gpkg",
## "INPUT_FIELD": "GEOID",
## "TARGET": "C:\\Users\\xee291\\AppData\\Local\\Temp\\RtmpWqGTBy\\file30d81a8870e5\\file30d8618768fb.gpkg",
## "TARGET_FIELD": "GEOID",
## "MATRIX_TYPE": 0,
## "NEAREST_POINTS": 1,
## "OUTPUT": "C:\\Users\\xee291\\AppData\\Local\\Temp\\RtmpWqGTBy\\file30d81a8870e5\\file30d824b5d60.gpkg"
## }
## }
##
## Running cmd.exe /c call \
## "C:/Program Files/QGIS 3.28.2/bin/qgis_process-qgis.bat" --json run \
## "qgis:distancematrix" -
output_sf <- sf::read_sf(qgis_output(out, "OUTPUT"))
output_sf$Distance
## [1] 64041.12
64041.12/5280 #To get feet into miles
## [1] 12.129
NOTE: tr_co[1,] means select the first row from
tr_co which is one of our two tracts.
tr_co[2,] means select the 2nd row, which is our other
tract.
(See it’s the same 12.13 mile distance?)