Regresiones de Poisson Univariadas para ICDAS

Aca están las modelos de ICDAS considerandola como variable de conteo Son regresiones univariadas

load("~/Dropbox/odontologia/maestria_anunziatta/julio2013/datos_tana_25072013.RData")


library(survey)
## Attaching package: 'survey'
## The following object(s) are masked from 'package:graphics':
## 
## dotchart
# domingo 28 de julio 2013

# ICDAS

modelo6.poi <- svyglm(ICDAS ~ Sexo.rec, diseniopost1, family = quasipoisson())

summary(modelo6.poi)
## 
## Call:
## svyglm(formula = ICDAS ~ Sexo.rec, diseniopost1, family = quasipoisson())
## 
## Survey design:
## postStratify(disenio1, ~categor.rec + Sexo, tabla.pob)
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   1.6819     0.0595   28.27   <2e-16 ***
## Sexo.rec2-F   0.0742     0.0975    0.76     0.45    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasipoisson family taken to be 3.454)
## 
## Number of Fisher Scoring iterations: 5
confint(modelo6.poi)
##               2.5 % 97.5 %
## (Intercept)  1.5653 1.7985
## Sexo.rec2-F -0.1169 0.2653
modelo7.poi <- svyglm(ICDAS ~ Nivel.Socieconomico.rec, diseniopost1, family = quasipoisson())



summary(modelo7.poi)
## 
## Call:
## svyglm(formula = ICDAS ~ Nivel.Socieconomico.rec, diseniopost1, 
##     family = quasipoisson())
## 
## Survey design:
## postStratify(disenio1, ~categor.rec + Sexo, tabla.pob)
## 
## Coefficients:
##                                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                      1.3791     0.0442   31.22  < 2e-16 ***
## Nivel.Socieconomico.rec2-MEDIO   0.4335     0.0485    8.93  9.0e-11 ***
## Nivel.Socieconomico.rec3-BAJO    0.5476     0.0603    9.09  5.8e-11 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasipoisson family taken to be 3.276)
## 
## Number of Fisher Scoring iterations: 5
confint(modelo7.poi)
##                                 2.5 % 97.5 %
## (Intercept)                    1.2925 1.4656
## Nivel.Socieconomico.rec2-MEDIO 0.3384 0.5286
## Nivel.Socieconomico.rec3-BAJO  0.4295 0.6657


modelo8.poi <- svyglm(ICDAS ~ Nivel.Educativo.de.la.Madre1.rec, diseniopost1, 
    family = quasipoisson())

summary(modelo8.poi)
## 
## Call:
## svyglm(formula = ICDAS ~ Nivel.Educativo.de.la.Madre1.rec, diseniopost1, 
##     family = quasipoisson())
## 
## Survey design:
## postStratify(disenio1, ~categor.rec + Sexo, tabla.pob)
## 
## Coefficients:
##                                                     Estimate Std. Error
## (Intercept)                                           1.2822     0.0870
## Nivel.Educativo.de.la.Madre1.rec2-High School         0.2822     0.0897
## Nivel.Educativo.de.la.Madre1.rec3-Elementary School   0.5805     0.0995
##                                                     t value Pr(>|t|)    
## (Intercept)                                           14.73  < 2e-16 ***
## Nivel.Educativo.de.la.Madre1.rec2-High School          3.15   0.0033 ** 
## Nivel.Educativo.de.la.Madre1.rec3-Elementary School    5.83  1.1e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasipoisson family taken to be 3.313)
## 
## Number of Fisher Scoring iterations: 5
confint(modelo8.poi)
##                                                      2.5 % 97.5 %
## (Intercept)                                         1.1116 1.4528
## Nivel.Educativo.de.la.Madre1.rec2-High School       0.1064 0.4581
## Nivel.Educativo.de.la.Madre1.rec3-Elementary School 0.3854 0.7756


modelo9.poi <- svyglm(ICDAS ~ Tipo.de.Escuela.rec, diseniopost1, family = quasipoisson())

summary(modelo9.poi)
## 
## Call:
## svyglm(formula = ICDAS ~ Tipo.de.Escuela.rec, diseniopost1, family = quasipoisson())
## 
## Survey design:
## postStratify(disenio1, ~categor.rec + Sexo, tabla.pob)
## 
## Coefficients:
##                              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                    1.4212     0.0856   16.60   <2e-16 ***
## Tipo.de.Escuela.rec2-Publica   0.3866     0.0938    4.12    2e-04 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasipoisson family taken to be 3.349)
## 
## Number of Fisher Scoring iterations: 5
confint(modelo9.poi)
##                               2.5 % 97.5 %
## (Intercept)                  1.2533 1.5890
## Tipo.de.Escuela.rec2-Publica 0.2028 0.5704

modelo11.poi <- svyglm(ICDAS ~ AtenOdonto2.rec, diseniopost1, family = quasipoisson())

summary(modelo11.poi)
## 
## Call:
## svyglm(formula = ICDAS ~ AtenOdonto2.rec, diseniopost1, family = quasipoisson())
## 
## Survey design:
## postStratify(disenio1, ~categor.rec + Sexo, tabla.pob)
## 
## Coefficients:
##                                         Estimate Std. Error t value
## (Intercept)                               1.5686     0.0410   38.27
## AtenOdonto2.rec2-publica                  0.2921     0.0739    3.95
## AtenOdonto2.rec3-nunca fue al dentista    0.4161     0.0748    5.56
##                                         Pr(>|t|)    
## (Intercept)                              < 2e-16 ***
## AtenOdonto2.rec2-publica                 0.00034 ***
## AtenOdonto2.rec3-nunca fue al dentista   2.5e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasipoisson family taken to be 3.396)
## 
## Number of Fisher Scoring iterations: 5
confint(modelo11.poi)
##                                          2.5 % 97.5 %
## (Intercept)                             1.4883 1.6489
## AtenOdonto2.rec2-publica                0.1472 0.4370
## AtenOdonto2.rec3-nunca fue al dentista  0.2695 0.5627



modelo12.poi <- svyglm(ICDAS ~ FrCepDenti.4.rec, diseniopost1, family = quasipoisson())


summary(modelo12.poi)
## 
## Call:
## svyglm(formula = ICDAS ~ FrCepDenti.4.rec, diseniopost1, family = quasipoisson())
## 
## Survey design:
## postStratify(disenio1, ~categor.rec + Sexo, tabla.pob)
## 
## Coefficients:
##                                        Estimate Std. Error t value
## (Intercept)                              1.8874     0.0825   22.87
## FrCepDenti.4.rec2-1 vez al dias         -0.1763     0.1216   -1.45
## FrCepDenti.4.rec3-2 veces al dia        -0.1538     0.0890   -1.73
## FrCepDenti.4.rec4-3 veces al dia o mas  -0.2232     0.0771   -2.90
##                                        Pr(>|t|)    
## (Intercept)                              <2e-16 ***
## FrCepDenti.4.rec2-1 vez al dias          0.1556    
## FrCepDenti.4.rec3-2 veces al dia         0.0924 .  
## FrCepDenti.4.rec4-3 veces al dia o mas   0.0064 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasipoisson family taken to be 3.364)
## 
## Number of Fisher Scoring iterations: 5
confint(modelo12.poi)
##                                          2.5 %   97.5 %
## (Intercept)                             1.7256  2.04918
## FrCepDenti.4.rec2-1 vez al dias        -0.4146  0.06195
## FrCepDenti.4.rec3-2 veces al dia       -0.3283  0.02058
## FrCepDenti.4.rec4-3 veces al dia o mas -0.3742 -0.07215


modelo13.poi <- svyglm(ICDAS ~ UsoDentifrico3.rec, diseniopost1, family = quasipoisson())



summary(modelo13.poi)
## 
## Call:
## svyglm(formula = ICDAS ~ UsoDentifrico3.rec, diseniopost1, family = quasipoisson())
## 
## Survey design:
## postStratify(disenio1, ~categor.rec + Sexo, tabla.pob)
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)              1.7183     0.0346   49.72   <2e-16 ***
## UsoDentifrico3.rec2-No  -0.1400     0.2158   -0.65     0.52    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasipoisson family taken to be 3.458)
## 
## Number of Fisher Scoring iterations: 5
confint(modelo13.poi)
##                          2.5 % 97.5 %
## (Intercept)             1.6505 1.7860
## UsoDentifrico3.rec2-No -0.5629 0.2829
modelo14.poi <- svyglm(ICDAS ~ FluorProf.rec, diseniopost1, family = quasipoisson())

summary(modelo14.poi)
## 
## Call:
## svyglm(formula = ICDAS ~ FluorProf.rec, diseniopost1, family = quasipoisson())
## 
## Survey design:
## postStratify(disenio1, ~categor.rec + Sexo, tabla.pob)
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)        1.70569    0.04699   36.30   <2e-16 ***
## FluorProf.rec2-No  0.00295    0.06802    0.04     0.97    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasipoisson family taken to be 3.195)
## 
## Number of Fisher Scoring iterations: 5
confint(modelo14.poi)
##                     2.5 % 97.5 %
## (Intercept)        1.6136 1.7978
## FluorProf.rec2-No -0.1304 0.1363

modelo15.poi <- svyglm(ICDAS ~ RefrColaB.rec, diseniopost1, family = quasipoisson())

summary(modelo15.poi)
## 
## Call:
## svyglm(formula = ICDAS ~ RefrColaB.rec, diseniopost1, family = quasipoisson())
## 
## Survey design:
## postStratify(disenio1, ~categor.rec + Sexo, tabla.pob)
## 
## Coefficients:
##                                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                        1.7979     0.0702   25.60   <2e-16 ***
## RefrColaB.rec2-A veces            -0.1375     0.0783   -1.76    0.087 .  
## RefrColaB.rec3-Nunca o raramente   0.0100     0.1018    0.10    0.922    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasipoisson family taken to be 3.408)
## 
## Number of Fisher Scoring iterations: 5
confint(modelo15.poi)
##                                    2.5 %  97.5 %
## (Intercept)                       1.6603 1.93557
## RefrColaB.rec2-A veces           -0.2909 0.01595
## RefrColaB.rec3-Nunca o raramente -0.1895 0.20956

modelo16.poi <- svyglm(ICDAS ~ MateDulceB.rec, diseniopost1, family = quasipoisson())

summary(modelo16.poi)
## 
## Call:
## svyglm(formula = ICDAS ~ MateDulceB.rec, diseniopost1, family = quasipoisson())
## 
## Survey design:
## postStratify(disenio1, ~categor.rec + Sexo, tabla.pob)
## 
## Coefficients:
##                                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                         1.9439     0.0682   28.52  < 2e-16 ***
## MateDulceB.rec2-A veces            -0.0911     0.1073   -0.85      0.4    
## MateDulceB.rec3-Nunca o raramente  -0.3577     0.0639   -5.60  2.2e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasipoisson family taken to be 3.251)
## 
## Number of Fisher Scoring iterations: 5
confint(modelo16.poi)
##                                     2.5 %  97.5 %
## (Intercept)                        1.8103  2.0775
## MateDulceB.rec2-A veces           -0.3014  0.1193
## MateDulceB.rec3-Nunca o raramente -0.4828 -0.2325
modelo17.poi <- svyglm(ICDAS ~ GolosinasB.rec, diseniopost1, family = quasipoisson())

summary(modelo17.poi)
## 
## Call:
## svyglm(formula = ICDAS ~ GolosinasB.rec, diseniopost1, family = quasipoisson())
## 
## Survey design:
## postStratify(disenio1, ~categor.rec + Sexo, tabla.pob)
## 
## Coefficients:
##                                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                         1.8129     0.0615   29.47   <2e-16 ***
## GolosinasB.rec2-A veces            -0.1111     0.0701   -1.59     0.12    
## GolosinasB.rec3-Nunca o raramente  -0.1991     0.1235   -1.61     0.12    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasipoisson family taken to be 3.359)
## 
## Number of Fisher Scoring iterations: 5
confint(modelo17.poi)
##                                     2.5 %  97.5 %
## (Intercept)                        1.6923 1.93344
## GolosinasB.rec2-A veces           -0.2485 0.02628
## GolosinasB.rec3-Nunca o raramente -0.4411 0.04284

modelo19.poi <- svyglm(ICDAS ~ Masas.DulcesB.rec, diseniopost1, family = quasipoisson())

summary(modelo19.poi)
## 
## Call:
## svyglm(formula = ICDAS ~ Masas.DulcesB.rec, diseniopost1, family = quasipoisson())
## 
## Survey design:
## postStratify(disenio1, ~categor.rec + Sexo, tabla.pob)
## 
## Coefficients:
##                                      Estimate Std. Error t value Pr(>|t|)
## (Intercept)                            1.8722     0.0591   31.67   <2e-16
## Masas.DulcesB.rec2-A veces            -0.1986     0.0704   -2.82   0.0076
## Masas.DulcesB.rec3-Nunca o raramente  -0.1644     0.1125   -1.46   0.1525
##                                         
## (Intercept)                          ***
## Masas.DulcesB.rec2-A veces           ** 
## Masas.DulcesB.rec3-Nunca o raramente    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasipoisson family taken to be 3.385)
## 
## Number of Fisher Scoring iterations: 5
confint(modelo19.poi)
##                                        2.5 %   97.5 %
## (Intercept)                           1.7564  1.98808
## Masas.DulcesB.rec2-A veces           -0.3365 -0.06062
## Masas.DulcesB.rec3-Nunca o raramente -0.3849  0.05617

modelo20.poi <- svyglm(ICDAS ~ UltmVisita1.rec, diseniopost1, family = quasipoisson())

summary(modelo20.poi)
## 
## Call:
## svyglm(formula = ICDAS ~ UltmVisita1.rec, diseniopost1, family = quasipoisson())
## 
## Survey design:
## postStratify(disenio1, ~categor.rec + Sexo, tabla.pob)
## 
## Coefficients:
##                                        Estimate Std. Error t value
## (Intercept)                              1.6414     0.0402   40.88
## UltmVisita1.rec2- años atrás             0.2062     0.0922    2.24
## UltmVisita1.rec3-Nunca fue al dentista   0.3375     0.0665    5.08
##                                        Pr(>|t|)    
## (Intercept)                             < 2e-16 ***
## UltmVisita1.rec2- años atrás              0.031 *  
## UltmVisita1.rec3-Nunca fue al dentista  1.1e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasipoisson family taken to be 3.401)
## 
## Number of Fisher Scoring iterations: 5
confint(modelo20.poi)
##                                          2.5 % 97.5 %
## (Intercept)                            1.56274 1.7201
## UltmVisita1.rec2- años atrás           0.02553 0.3869
## UltmVisita1.rec3-Nunca fue al dentista 0.20718 0.4678




modelo21.poi <- svyglm(ICDAS ~ IGS.rec1, diseniopost1, family = quasipoisson())


summary(modelo21.poi)
## 
## Call:
## svyglm(formula = ICDAS ~ IGS.rec1, diseniopost1, family = quasipoisson())
## 
## Survey design:
## postStratify(disenio1, ~categor.rec + Sexo, tabla.pob)
## 
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)    
## (Intercept)           1.70945    0.06040   28.30   <2e-16 ***
## IGS.rec12-De 20 a 60 -0.00301    0.09702   -0.03     0.98    
## IGS.rec13-Mas de 60   0.13223    0.08248    1.60     0.12    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasipoisson family taken to be 3.46)
## 
## Number of Fisher Scoring iterations: 5
confint(modelo21.poi)
##                         2.5 % 97.5 %
## (Intercept)           1.59106 1.8278
## IGS.rec12-De 20 a 60 -0.19317 0.1872
## IGS.rec13-Mas de 60  -0.02943 0.2939


modelo22.poi <- svyglm(ICDAS ~ Nive.Educativo.de.la.Madre2.rec, diseniopost1, 
    family = quasipoisson())

summary(modelo22.poi)
## 
## Call:
## svyglm(formula = ICDAS ~ Nive.Educativo.de.la.Madre2.rec, diseniopost1, 
##     family = quasipoisson())
## 
## Survey design:
## postStratify(disenio1, ~categor.rec + Sexo, tabla.pob)
## 
## Coefficients:
##                                                     Estimate Std. Error
## (Intercept)                                           1.3870     0.0747
## Nive.Educativo.de.la.Madre2.rec2-HIGH SCHOOL          0.3426     0.0873
## Nive.Educativo.de.la.Madre2.rec3-ELEMENTARY SCHOOL    0.5739     0.0934
##                                                     t value Pr(>|t|)    
## (Intercept)                                           18.56  < 2e-16 ***
## Nive.Educativo.de.la.Madre2.rec2-HIGH SCHOOL           3.92  0.00036 ***
## Nive.Educativo.de.la.Madre2.rec3-ELEMENTARY SCHOOL     6.14    4e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasipoisson family taken to be 3.341)
## 
## Number of Fisher Scoring iterations: 5
confint(modelo22.poi)
##                                                      2.5 % 97.5 %
## (Intercept)                                         1.2405 1.5335
## Nive.Educativo.de.la.Madre2.rec2-HIGH SCHOOL        0.1715 0.5136
## Nive.Educativo.de.la.Madre2.rec3-ELEMENTARY SCHOOL  0.3907 0.7570