- This exercise relates to the College data set, which can be found in the file College.csv . It contains a number of variables for 777 different universities and colleges in the US. The variables are
• Private : Public/private indicator
• Apps : Number of applications received
• Accept : Number of applicants accepted
• Enroll : Number of new students enrolled
• Top10perc : New students from top 10 % of high school class
• Top25perc : New students from top 25 % of high school class
• F.Undergrad : Number of full-time undergraduates
• P.Undergrad : Number of part-time undergraduates
• Outstate : Out-of-state tuition
• Room.Board : Room and board costs
• Books : Estimated book costs
• Personal : Estimated personal spending
• PhD : Percent of faculty with Ph.D.’s
• Terminal : Percent of faculty with terminal degree
• S.F.Ratio : Student/faculty ratio
• perc.alumni : Percent of alumni who donate
• Expend : Instructional expenditure per student
• Grad.Rate : Graduation rate
Before reading the data into R , it can be viewed in Excel or a text editor.
- Use the read.csv() function to read the data into R . Call the loaded data college . Make sure that you have the directory set to the correct location for the data.
- Look at the data using the fix() function. You should notice that the first column is just the name of each university. We don’t really want R to treat this as data. However, it may be handy to have these names for later.
# (a)
college = read.csv("College.csv")
rownames(college) = college[ ,1]
fix(college)
Try the following commands
>rownames ( college ) = college [ ,1]
>fix ( college )
You should see that there is now a row.names column with the name of each university recorded. This means that R has given each row a name corresponding to the appropriate university. R will not try to perform calculations on the row names. However, we still need to eliminate the first column in the data where the names are stored. Try
college = college[ ,-1]
fix(college)
college = college [ , -1]
fix ( college )
Now you should see that the first data column is Private . Note that another column labeled row.names now appears before the Private column. However, this is not a data column but rather the name that R is giving to each row.
(c)
i. Use the summary() function to produce a numerical summary of the variables in the data set.
summary(college)
Private Apps Accept Enroll Top10perc Top25perc F.Undergrad P.Undergrad
No :212 Min. : 81 Min. : 72 Min. : 35 Min. : 1.00 Min. : 9.0 Min. : 139 Min. : 1.0
Yes:565 1st Qu.: 776 1st Qu.: 604 1st Qu.: 242 1st Qu.:15.00 1st Qu.: 41.0 1st Qu.: 992 1st Qu.: 95.0
Median : 1558 Median : 1110 Median : 434 Median :23.00 Median : 54.0 Median : 1707 Median : 353.0
Mean : 3002 Mean : 2019 Mean : 780 Mean :27.56 Mean : 55.8 Mean : 3700 Mean : 855.3
3rd Qu.: 3624 3rd Qu.: 2424 3rd Qu.: 902 3rd Qu.:35.00 3rd Qu.: 69.0 3rd Qu.: 4005 3rd Qu.: 967.0
Max. :48094 Max. :26330 Max. :6392 Max. :96.00 Max. :100.0 Max. :31643 Max. :21836.0
Outstate Room.Board Books Personal PhD Terminal S.F.Ratio
Min. : 2340 Min. :1780 Min. : 96.0 Min. : 250 Min. : 8.00 Min. : 24.0 Min. : 2.50
1st Qu.: 7320 1st Qu.:3597 1st Qu.: 470.0 1st Qu.: 850 1st Qu.: 62.00 1st Qu.: 71.0 1st Qu.:11.50
Median : 9990 Median :4200 Median : 500.0 Median :1200 Median : 75.00 Median : 82.0 Median :13.60
Mean :10441 Mean :4358 Mean : 549.4 Mean :1341 Mean : 72.66 Mean : 79.7 Mean :14.09
3rd Qu.:12925 3rd Qu.:5050 3rd Qu.: 600.0 3rd Qu.:1700 3rd Qu.: 85.00 3rd Qu.: 92.0 3rd Qu.:16.50
Max. :21700 Max. :8124 Max. :2340.0 Max. :6800 Max. :103.00 Max. :100.0 Max. :39.80
perc.alumni Expend Grad.Rate
Min. : 0.00 Min. : 3186 Min. : 10.00
1st Qu.:13.00 1st Qu.: 6751 1st Qu.: 53.00
Median :21.00 Median : 8377 Median : 65.00
Mean :22.74 Mean : 9660 Mean : 65.46
3rd Qu.:31.00 3rd Qu.:10830 3rd Qu.: 78.00
Max. :64.00 Max. :56233 Max. :118.00
- Use the pairs() function to produce a scatterplot matrix of the first ten columns or variables of the data. Recall that you can reference the first ten columns of a matrix A using A[,1:10] .
pairs(college[ ,1:10])

- Use the plot() function to produce side-by-side boxplots of Outstate versus Private .
attach(college)
The following objects are masked from college (pos = 3):
Accept, Apps, Books, Enroll, Expend, F.Undergrad, Grad.Rate, Outstate, P.Undergrad, perc.alumni, Personal,
PhD, Private, Room.Board, S.F.Ratio, Terminal, Top10perc, Top25perc
The following objects are masked from college (pos = 4):
Accept, Apps, Books, Enroll, Expend, F.Undergrad, Grad.Rate, Outstate, P.Undergrad, perc.alumni, Personal,
PhD, Private, Room.Board, S.F.Ratio, Terminal, Top10perc, Top25perc
The following objects are masked from college (pos = 5):
Accept, Apps, Books, Enroll, Expend, F.Undergrad, Grad.Rate, Outstate, P.Undergrad, perc.alumni, Personal,
PhD, Private, Room.Board, S.F.Ratio, Terminal, Top10perc, Top25perc
The following objects are masked from college (pos = 6):
Accept, Apps, Books, Enroll, Expend, F.Undergrad, Grad.Rate, Outstate, P.Undergrad, perc.alumni, Personal,
PhD, Private, Room.Board, S.F.Ratio, Terminal, Top10perc, Top25perc
The following objects are masked from college (pos = 7):
Accept, Apps, Books, Enroll, Expend, F.Undergrad, Grad.Rate, Outstate, P.Undergrad, perc.alumni, Personal,
PhD, Private, Room.Board, S.F.Ratio, Terminal, Top10perc, Top25perc
The following objects are masked from college (pos = 8):
Accept, Apps, Books, Enroll, Expend, F.Undergrad, Grad.Rate, Outstate, P.Undergrad, perc.alumni, Personal,
PhD, Private, Room.Board, S.F.Ratio, Terminal, Top10perc, Top25perc
The following objects are masked from college (pos = 9):
Accept, Apps, Books, Enroll, Expend, F.Undergrad, Grad.Rate, Outstate, P.Undergrad, perc.alumni, Personal,
PhD, Private, Room.Board, S.F.Ratio, Terminal, Top10perc, Top25perc
plot(Private, Outstate)

- Create a new qualitative variable, called Elite , by binning the Top10perc variable. We are going to divide universities into two groups based on whether or not the proportion of students coming from the top 10 % of their high school classes exceeds 50 %.
Top10perc = as.factor(Top10perc)
Elite = rep (" No " , nrow ( college ) )
Elite [ college$Top1 0 pe rc >50]=" Yes "
Elite = as . factor ( Elite )
college = data . frame ( college , Elite )
Elite = rep("No", nrow(college))
Elite[college$Top10perc > 50] = "Yes"
Elite = as.factor(Elite)
college = data.frame(college, Elite)
# Entendi nada...
# Ok, acho que entendi. Primeiro aquela função rep() vai escrever todas as linhas da college como não nessa nova variável
# Elite.
# Depois, vai escrever um "Yes" em cada linha que Top10perc for maior que 50%
# Finalmente vai transformar Elite em qualitativo e vai criar um data frame college, incluindo a coluna Elite.
Use the summary() function to see how many elite univer- sities there are. Now use the plot() function to produce side-by-side boxplots of Outstate versus Elite .
summary(Elite)
No Yes
699 78
- Use the hist() function to produce some histograms with differing numbers of bins for a few of the quantitative vari- ables. You may find the command par(mfrow=c(2,2)) useful: it will divide the print window into four regions so that four plots can be made simultaneously. Modifying the arguments to this function will divide the screen in other ways.
par(mfrow=c(2,2))
hist(Apps)
hist(Enroll)
hist(Personal)
hist(PhD)

- Continue exploring the data, and provide a brief summary of what you discover.
Ok, deu pra pegar a ideia
- This exercise involves the Auto data set studied in the lab. Make sure that the missing values have been removed from the data.
Auto = read.table("Auto.data", header=T, na.strings="?")
Auto = na.omit(Auto)
summary(Auto)
mpg cylinders displacement horsepower weight acceleration year
Min. : 9,00 Min. :3,000 Min. : 68,0 Min. : 46,0 Min. :1613 Min. : 8,00 Min. :70,00
1st Qu.:17,00 1st Qu.:4,000 1st Qu.:105,0 1st Qu.: 75,0 1st Qu.:2225 1st Qu.:13,78 1st Qu.:73,00
Median :22,75 Median :4,000 Median :151,0 Median : 93,5 Median :2804 Median :15,50 Median :76,00
Mean :23,45 Mean :5,472 Mean :194,4 Mean :104,5 Mean :2978 Mean :15,54 Mean :75,98
3rd Qu.:29,00 3rd Qu.:8,000 3rd Qu.:275,8 3rd Qu.:126,0 3rd Qu.:3615 3rd Qu.:17,02 3rd Qu.:79,00
Max. :46,60 Max. :8,000 Max. :455,0 Max. :230,0 Max. :5140 Max. :24,80 Max. :82,00
origin name
Min. :1,000 amc matador : 5
1st Qu.:1,000 ford pinto : 5
Median :1,000 toyota corolla : 5
Mean :1,577 amc gremlin : 4
3rd Qu.:2,000 amc hornet : 4
Max. :3,000 chevrolet chevette: 4
(Other) :365
- Which of the predictors are quantitative, and which are quali- tative?
We have one qualitative column and 8 quantitative column
- What is the range of each quantitative predictor? You can an- swer this using the range() function.
attach(Auto)
The following objects are masked from Auto (pos = 3):
acceleration, cylinders, displacement, horsepower, mpg, name, origin, weight, year
The following objects are masked from Auto (pos = 4):
acceleration, cylinders, displacement, horsepower, mpg, name, origin, weight, year
The following objects are masked from Auto (pos = 5):
acceleration, cylinders, displacement, horsepower, mpg, name, origin, weight, year
The following objects are masked from Auto (pos = 6):
acceleration, cylinders, displacement, horsepower, mpg, name, origin, weight, year
range(mpg)
[1] 9,0 46,6
range(cylinders)
[1] 3 8
range(acceleration)
[1] 8,0 24,8
range(displacement)
[1] 68 455
range(horsepower)
[1] 46 230
range(origin)
[1] 1 3
range(weight)
[1] 1613 5140
range(year)
[1] 70 82
- What is the mean and standard deviation of each quantitative predictor?
mean(mpg)
[1] 23,44592
mean(cylinders)
[1] 5,471939
mean(acceleration)
[1] 15,54133
mean(displacement)
[1] 194,412
mean(horsepower)
[1] 104,4694
mean(origin)
[1] 1,576531
mean(weight)
[1] 2977,584
mean(year)
[1] 75,97959
sd(mpg)
[1] 7,805007
sd(cylinders)
[1] 1,705783
sd(acceleration)
[1] 2,758864
sd(displacement)
[1] 104,644
sd(horsepower)
[1] 38,49116
sd(origin)
[1] 0,8055182
sd(weight)
[1] 849,4026
sd(year)
[1] 3,683737
- Now remove the 10th through 85th observations. What is the range, mean, and standard deviation of each predictor in the subset of the data that remains?
Auto = Auto[-(10:84),]
attach(Auto)
The following objects are masked from Auto (pos = 3):
acceleration, cylinders, displacement, horsepower, mpg, name, origin, weight, year
The following objects are masked from Auto (pos = 4):
acceleration, cylinders, displacement, horsepower, mpg, name, origin, weight, year
The following objects are masked from Auto (pos = 5):
acceleration, cylinders, displacement, horsepower, mpg, name, origin, weight, year
The following objects are masked from Auto (pos = 6):
acceleration, cylinders, displacement, horsepower, mpg, name, origin, weight, year
The following objects are masked from Auto (pos = 7):
acceleration, cylinders, displacement, horsepower, mpg, name, origin, weight, year
mean(mpg)
[1] 27,9509
mean(cylinders)
[1] 5
mean(acceleration)
[1] 15,89222
mean(displacement)
[1] 164,2695
mean(horsepower)
[1] 93,52695
mean(origin)
[1] 1,712575
mean(weight)
[1] 2727,91
mean(year)
[1] 79,23952
sd(mpg)
[1] 7,657203
sd(cylinders)
[1] 1,509009
sd(acceleration)
[1] 2,767126
sd(displacement)
[1] 87,60023
sd(horsepower)
[1] 31,88776
sd(origin)
[1] 0,8788122
sd(weight)
[1] 651,5159
sd(year)
[1] 2,68465
- Using the full data set, investigate the predictors graphically, using scatterplots or other tools of your choice. Create some plots highlighting the relationships among the predictors. Comment on your findings.
Não sei fazer
- Suppose that we wish to predict gas mileage ( mpg ) on the basis of the other variables. Do your plots suggest that any of the other variables might be useful in predicting mpg ? Justify your answer.
Sei não senhor
- This exercise involves the Boston housing data set.
- To begin, load in the Boston data set. The Boston data set is part of the MASS library in R .
> library ( MASS )
Now the data set is contained in the object Boston.
Boston
Read about the data set:
> ? Boston
How many rows are in this data set? How many columns? What do the rows and columns represent?
(b) Make some pairwise scatterplots of the predictors (columns) in this data set. Describe your findings.
(c) Are any of the predictors associated with per capita crime rate? If so, explain the relationship.
(d) Do any of the suburbs of Boston appear to have particularly high crime rates? Tax rates? Pupil-teacher ratios? Comment on the range of each predictor.
(e) How many of the suburbs in this data set bound the Charles river?
(f) What is the median pupil-teacher ratio among the towns in this data set?
(g) Which suburb of Boston has lowest median value of owner- occupied homes? What are the values of the other predictors for that suburb, and how do those values compare to the overall ranges for those predictors? Comment on your findings.
(h) In this data set, how many of the suburbs average more than seven rooms per dwelling? More than eight rooms per dwelling? Comment on the suburbs that average more than eight rooms per dwelling.
LS0tCnRpdGxlOiAiRXhlcmNpc2VzIGZvciBSIgpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sKLS0tCgo4LiBUaGlzIGV4ZXJjaXNlIHJlbGF0ZXMgdG8gdGhlIENvbGxlZ2UgZGF0YSBzZXQsIHdoaWNoIGNhbiBiZSBmb3VuZCBpbgp0aGUgZmlsZSBDb2xsZWdlLmNzdiAuIEl0IGNvbnRhaW5zIGEgbnVtYmVyIG9mIHZhcmlhYmxlcyBmb3IgNzc3IGRpZmZlcmVudAp1bml2ZXJzaXRpZXMgYW5kIGNvbGxlZ2VzIGluIHRoZSBVUy4gVGhlIHZhcmlhYmxlcyBhcmUgPGJyPgrigKIgUHJpdmF0ZSA6IFB1YmxpYy9wcml2YXRlIGluZGljYXRvciA8YnI+CuKAoiBBcHBzIDogTnVtYmVyIG9mIGFwcGxpY2F0aW9ucyByZWNlaXZlZCA8YnI+CuKAoiBBY2NlcHQgOiBOdW1iZXIgb2YgYXBwbGljYW50cyBhY2NlcHRlZCA8YnI+CuKAoiBFbnJvbGwgOiBOdW1iZXIgb2YgbmV3IHN0dWRlbnRzIGVucm9sbGVkIDxicj4K4oCiIFRvcDEwcGVyYyA6IE5ldyBzdHVkZW50cyBmcm9tIHRvcCAxMCAlIG9mIGhpZ2ggc2Nob29sIGNsYXNzIDxicj4K4oCiIFRvcDI1cGVyYyA6IE5ldyBzdHVkZW50cyBmcm9tIHRvcCAyNSAlIG9mIGhpZ2ggc2Nob29sIGNsYXNzIDxicj4K4oCiIEYuVW5kZXJncmFkIDogTnVtYmVyIG9mIGZ1bGwtdGltZSB1bmRlcmdyYWR1YXRlcyA8YnI+CuKAoiBQLlVuZGVyZ3JhZCA6IE51bWJlciBvZiBwYXJ0LXRpbWUgdW5kZXJncmFkdWF0ZXMgPGJyPgrigKIgT3V0c3RhdGUgOiBPdXQtb2Ytc3RhdGUgdHVpdGlvbiA8YnI+CuKAoiBSb29tLkJvYXJkIDogUm9vbSBhbmQgYm9hcmQgY29zdHMgPGJyPgrigKIgQm9va3MgOiBFc3RpbWF0ZWQgYm9vayBjb3N0cyA8YnI+CuKAoiBQZXJzb25hbCA6IEVzdGltYXRlZCBwZXJzb25hbCBzcGVuZGluZyA8YnI+CuKAoiBQaEQgOiBQZXJjZW50IG9mIGZhY3VsdHkgd2l0aCBQaC5ELuKAmXMgPGJyPgrigKIgVGVybWluYWwgOiBQZXJjZW50IG9mIGZhY3VsdHkgd2l0aCB0ZXJtaW5hbCBkZWdyZWUgPGJyPgrigKIgUy5GLlJhdGlvIDogU3R1ZGVudC9mYWN1bHR5IHJhdGlvIDxicj4K4oCiIHBlcmMuYWx1bW5pIDogUGVyY2VudCBvZiBhbHVtbmkgd2hvIGRvbmF0ZSA8YnI+CuKAoiBFeHBlbmQgOiBJbnN0cnVjdGlvbmFsIGV4cGVuZGl0dXJlIHBlciBzdHVkZW50IDxicj4K4oCiIEdyYWQuUmF0ZSA6IEdyYWR1YXRpb24gcmF0ZTxicj4KQmVmb3JlIHJlYWRpbmcgdGhlIGRhdGEgaW50byBSICwgaXQgY2FuIGJlIHZpZXdlZCBpbiBFeGNlbCBvciBhIHRleHQKZWRpdG9yLjxicj4KKGEpIFVzZSB0aGUgcmVhZC5jc3YoKSBmdW5jdGlvbiB0byByZWFkIHRoZSBkYXRhIGludG8gUiAuIENhbGwgdGhlCmxvYWRlZCBkYXRhIGNvbGxlZ2UgLiBNYWtlIHN1cmUgdGhhdCB5b3UgaGF2ZSB0aGUgZGlyZWN0b3J5IHNldAp0byB0aGUgY29ycmVjdCBsb2NhdGlvbiBmb3IgdGhlIGRhdGEuPGJyPgooYikgTG9vayBhdCB0aGUgZGF0YSB1c2luZyB0aGUgZml4KCkgZnVuY3Rpb24uIFlvdSBzaG91bGQgbm90aWNlCnRoYXQgdGhlIGZpcnN0IGNvbHVtbiBpcyBqdXN0IHRoZSBuYW1lIG9mIGVhY2ggdW5pdmVyc2l0eS4gV2UgZG9u4oCZdApyZWFsbHkgd2FudCBSIHRvIHRyZWF0IHRoaXMgYXMgZGF0YS4gSG93ZXZlciwgaXQgbWF5IGJlIGhhbmR5IHRvCmhhdmUgdGhlc2UgbmFtZXMgZm9yIGxhdGVyLjxicj4KCmBgYHtyfQojIChhKQpjb2xsZWdlID0gcmVhZC5jc3YoIkNvbGxlZ2UuY3N2IikKcm93bmFtZXMoY29sbGVnZSkgPSBjb2xsZWdlWyAsMV0KZml4KGNvbGxlZ2UpCmBgYAoKClRyeSB0aGUgZm9sbG93aW5nIGNvbW1hbmRzPGJyPgo+cm93bmFtZXMgKCBjb2xsZWdlICkgPSBjb2xsZWdlIFsgLDFdPGJyPgo+Zml4ICggY29sbGVnZSApPGJyPgoKWW91IHNob3VsZCBzZWUgdGhhdCB0aGVyZSBpcyBub3cgYSByb3cubmFtZXMgY29sdW1uIHdpdGggdGhlCm5hbWUgb2YgZWFjaCB1bml2ZXJzaXR5IHJlY29yZGVkLiBUaGlzIG1lYW5zIHRoYXQgUiBoYXMgZ2l2ZW4KZWFjaCByb3cgYSBuYW1lIGNvcnJlc3BvbmRpbmcgdG8gdGhlIGFwcHJvcHJpYXRlIHVuaXZlcnNpdHkuIFIKd2lsbCBub3QgdHJ5IHRvIHBlcmZvcm0gY2FsY3VsYXRpb25zIG9uIHRoZSByb3cgbmFtZXMuIEhvd2V2ZXIsCndlIHN0aWxsIG5lZWQgdG8gZWxpbWluYXRlIHRoZSBmaXJzdCBjb2x1bW4gaW4gdGhlIGRhdGEgd2hlcmUgdGhlCm5hbWVzIGFyZSBzdG9yZWQuIFRyeTxicj4KCmBgYHtyfQpjb2xsZWdlID0gY29sbGVnZVsgLC0xXQpmaXgoY29sbGVnZSkKYGBgCgoKPiBjb2xsZWdlID0gY29sbGVnZSBbICwgLTFdPGJyPgo+IGZpeCAoIGNvbGxlZ2UgKTxicj4KCk5vdyB5b3Ugc2hvdWxkIHNlZSB0aGF0IHRoZSBmaXJzdCBkYXRhIGNvbHVtbiBpcyBQcml2YXRlIC4gTm90ZQp0aGF0IGFub3RoZXIgY29sdW1uIGxhYmVsZWQgcm93Lm5hbWVzIG5vdyBhcHBlYXJzIGJlZm9yZSB0aGUKUHJpdmF0ZSBjb2x1bW4uIEhvd2V2ZXIsIHRoaXMgaXMgbm90IGEgZGF0YSBjb2x1bW4gYnV0IHJhdGhlcgp0aGUgbmFtZSB0aGF0IFIgaXMgZ2l2aW5nIHRvIGVhY2ggcm93Ljxicj4KKGMpPGJyPgppLiBVc2UgdGhlIHN1bW1hcnkoKSBmdW5jdGlvbiB0byBwcm9kdWNlIGEgbnVtZXJpY2FsIHN1bW1hcnkKb2YgdGhlIHZhcmlhYmxlcyBpbiB0aGUgZGF0YSBzZXQuPGJyPgoKYGBge3J9CnN1bW1hcnkoY29sbGVnZSkKYGBgCgoKaWkuIFVzZSB0aGUgcGFpcnMoKSBmdW5jdGlvbiB0byBwcm9kdWNlIGEgc2NhdHRlcnBsb3QgbWF0cml4IG9mCnRoZSBmaXJzdCB0ZW4gY29sdW1ucyBvciB2YXJpYWJsZXMgb2YgdGhlIGRhdGEuIFJlY2FsbCB0aGF0CnlvdSBjYW4gcmVmZXJlbmNlIHRoZSBmaXJzdCB0ZW4gY29sdW1ucyBvZiBhIG1hdHJpeCBBIHVzaW5nCkFbLDE6MTBdIC48YnI+CgpgYGB7cn0KcGFpcnMoY29sbGVnZVsgLDE6MTBdKQpgYGAKCgppaWkuIFVzZSB0aGUgcGxvdCgpIGZ1bmN0aW9uIHRvIHByb2R1Y2Ugc2lkZS1ieS1zaWRlIGJveHBsb3RzIG9mCk91dHN0YXRlIHZlcnN1cyBQcml2YXRlIC48YnI+CgpgYGB7cn0KYXR0YWNoKGNvbGxlZ2UpCnBsb3QoUHJpdmF0ZSwgT3V0c3RhdGUpCmBgYAoKCml2LiBDcmVhdGUgYSBuZXcgcXVhbGl0YXRpdmUgdmFyaWFibGUsIGNhbGxlZCBFbGl0ZSAsIGJ5IGJpbm5pbmcKdGhlIFRvcDEwcGVyYyB2YXJpYWJsZS4gV2UgYXJlIGdvaW5nIHRvIGRpdmlkZSB1bml2ZXJzaXRpZXMKaW50byB0d28gZ3JvdXBzIGJhc2VkIG9uIHdoZXRoZXIgb3Igbm90IHRoZSBwcm9wb3J0aW9uCm9mIHN0dWRlbnRzIGNvbWluZyBmcm9tIHRoZSB0b3AgMTAgJSBvZiB0aGVpciBoaWdoIHNjaG9vbApjbGFzc2VzIGV4Y2VlZHMgNTAgJS48YnI+CgpgYGB7cn0KVG9wMTBwZXJjID0gYXMuZmFjdG9yKFRvcDEwcGVyYykKYGBgCgoKRWxpdGUgPSByZXAgKCIgTm8gIiAsIG5yb3cgKCBjb2xsZWdlICkgKTxicj4KRWxpdGUgWyBjb2xsZWdlJFRvcDEgMCBwZSByYyA+NTBdPSIgWWVzICI8YnI+CkVsaXRlID0gYXMgLiBmYWN0b3IgKCBFbGl0ZSApPGJyPgpjb2xsZWdlID0gZGF0YSAuIGZyYW1lICggY29sbGVnZSAsIEVsaXRlICk8YnI+CgpgYGB7cn0KRWxpdGUgPSByZXAoIk5vIiwgbnJvdyhjb2xsZWdlKSkKRWxpdGVbY29sbGVnZSRUb3AxMHBlcmMgPiA1MF0gPSAiWWVzIgpFbGl0ZSA9IGFzLmZhY3RvcihFbGl0ZSkKY29sbGVnZSA9IGRhdGEuZnJhbWUoY29sbGVnZSwgRWxpdGUpCiMgRW50ZW5kaSBuYWRhLi4uCiMgT2ssIGFjaG8gcXVlIGVudGVuZGkuIFByaW1laXJvIGFxdWVsYSBmdW7Dp8OjbyByZXAoKSB2YWkgZXNjcmV2ZXIgdG9kYXMgYXMgbGluaGFzIGRhIGNvbGxlZ2UgY29tbyBuw6NvIG5lc3NhIG5vdmEgdmFyacOhdmVsCiMgRWxpdGUuCiMgRGVwb2lzLCB2YWkgZXNjcmV2ZXIgdW0gIlllcyIgZW0gY2FkYSBsaW5oYSBxdWUgVG9wMTBwZXJjIGZvciBtYWlvciBxdWUgNTAlCiMgRmluYWxtZW50ZSB2YWkgdHJhbnNmb3JtYXIgRWxpdGUgZW0gcXVhbGl0YXRpdm8gZSB2YWkgY3JpYXIgdW0gZGF0YSBmcmFtZSBjb2xsZWdlLCBpbmNsdWluZG8gYSBjb2x1bmEgRWxpdGUuCmBgYAoKCgpVc2UgdGhlIHN1bW1hcnkoKSBmdW5jdGlvbiB0byBzZWUgaG93IG1hbnkgZWxpdGUgdW5pdmVyLQpzaXRpZXMgdGhlcmUgYXJlLiBOb3cgdXNlIHRoZSBwbG90KCkgZnVuY3Rpb24gdG8gcHJvZHVjZQpzaWRlLWJ5LXNpZGUgYm94cGxvdHMgb2YgT3V0c3RhdGUgdmVyc3VzIEVsaXRlIC48YnI+CgpgYGB7cn0Kc3VtbWFyeShFbGl0ZSkKYGBgCgoKdi4gVXNlIHRoZSBoaXN0KCkgZnVuY3Rpb24gdG8gcHJvZHVjZSBzb21lIGhpc3RvZ3JhbXMgd2l0aApkaWZmZXJpbmcgbnVtYmVycyBvZiBiaW5zIGZvciBhIGZldyBvZiB0aGUgcXVhbnRpdGF0aXZlIHZhcmktCmFibGVzLiBZb3UgbWF5IGZpbmQgdGhlIGNvbW1hbmQgcGFyKG1mcm93PWMoMiwyKSkgdXNlZnVsOgppdCB3aWxsIGRpdmlkZSB0aGUgcHJpbnQgd2luZG93IGludG8gZm91ciByZWdpb25zIHNvIHRoYXQgZm91cgpwbG90cyBjYW4gYmUgbWFkZSBzaW11bHRhbmVvdXNseS4gTW9kaWZ5aW5nIHRoZSBhcmd1bWVudHMKdG8gdGhpcyBmdW5jdGlvbiB3aWxsIGRpdmlkZSB0aGUgc2NyZWVuIGluIG90aGVyIHdheXMuPGJyPgoKYGBge3J9CnBhcihtZnJvdz1jKDIsMikpCmhpc3QoQXBwcykKaGlzdChFbnJvbGwpCmhpc3QoUGVyc29uYWwpCmhpc3QoUGhEKQpgYGAKCgp2aS4gQ29udGludWUgZXhwbG9yaW5nIHRoZSBkYXRhLCBhbmQgcHJvdmlkZSBhIGJyaWVmIHN1bW1hcnkKb2Ygd2hhdCB5b3UgZGlzY292ZXIuPGJyPgoKKk9rLCBkZXUgcHJhIHBlZ2FyIGEgaWRlaWEqCgo5LiBUaGlzIGV4ZXJjaXNlIGludm9sdmVzIHRoZSBBdXRvIGRhdGEgc2V0IHN0dWRpZWQgaW4gdGhlIGxhYi4gTWFrZSBzdXJlCnRoYXQgdGhlIG1pc3NpbmcgdmFsdWVzIGhhdmUgYmVlbiByZW1vdmVkIGZyb20gdGhlIGRhdGEuPGJyPgoKYGBge3J9CkF1dG8gPSByZWFkLnRhYmxlKCJBdXRvLmRhdGEiLCBoZWFkZXI9VCwgbmEuc3RyaW5ncz0iPyIpCkF1dG8gPSBuYS5vbWl0KEF1dG8pCnN1bW1hcnkoQXV0bykKCmBgYAoKCihhKSBXaGljaCBvZiB0aGUgcHJlZGljdG9ycyBhcmUgcXVhbnRpdGF0aXZlLCBhbmQgd2hpY2ggYXJlIHF1YWxpLQp0YXRpdmU/PGJyPgoKKldlIGhhdmUgb25lIHF1YWxpdGF0aXZlIGNvbHVtbiBhbmQgOCBxdWFudGl0YXRpdmUgY29sdW1uKgoKKGIpIFdoYXQgaXMgdGhlIHJhbmdlIG9mIGVhY2ggcXVhbnRpdGF0aXZlIHByZWRpY3Rvcj8gWW91IGNhbiBhbi0Kc3dlciB0aGlzIHVzaW5nIHRoZSByYW5nZSgpIGZ1bmN0aW9uLjxicj4KCgpgYGB7cn0KYXR0YWNoKEF1dG8pCnJhbmdlKG1wZykKcmFuZ2UoY3lsaW5kZXJzKQpyYW5nZShhY2NlbGVyYXRpb24pCnJhbmdlKGRpc3BsYWNlbWVudCkKcmFuZ2UoaG9yc2Vwb3dlcikKcmFuZ2Uob3JpZ2luKQpyYW5nZSh3ZWlnaHQpCnJhbmdlKHllYXIpCmBgYAoKKGMpIFdoYXQgaXMgdGhlIG1lYW4gYW5kIHN0YW5kYXJkIGRldmlhdGlvbiBvZiBlYWNoIHF1YW50aXRhdGl2ZQpwcmVkaWN0b3I/PGJyPgoKYGBge3J9Cm1lYW4obXBnKQptZWFuKGN5bGluZGVycykKbWVhbihhY2NlbGVyYXRpb24pCm1lYW4oZGlzcGxhY2VtZW50KQptZWFuKGhvcnNlcG93ZXIpCm1lYW4ob3JpZ2luKQptZWFuKHdlaWdodCkKbWVhbih5ZWFyKQpgYGAKCmBgYHtyfQpzZChtcGcpCnNkKGN5bGluZGVycykKc2QoYWNjZWxlcmF0aW9uKQpzZChkaXNwbGFjZW1lbnQpCnNkKGhvcnNlcG93ZXIpCnNkKG9yaWdpbikKc2Qod2VpZ2h0KQpzZCh5ZWFyKQpgYGAKCgooZCkgTm93IHJlbW92ZSB0aGUgMTB0aCB0aHJvdWdoIDg1dGggb2JzZXJ2YXRpb25zLiBXaGF0IGlzIHRoZQpyYW5nZSwgbWVhbiwgYW5kIHN0YW5kYXJkIGRldmlhdGlvbiBvZiBlYWNoIHByZWRpY3RvciBpbiB0aGUKc3Vic2V0IG9mIHRoZSBkYXRhIHRoYXQgcmVtYWlucz88YnI+CgpgYGB7cn0KQXV0byA9IEF1dG9bLSgxMDo4NCksXQphdHRhY2goQXV0bykKbWVhbihtcGcpCm1lYW4oY3lsaW5kZXJzKQptZWFuKGFjY2VsZXJhdGlvbikKbWVhbihkaXNwbGFjZW1lbnQpCm1lYW4oaG9yc2Vwb3dlcikKbWVhbihvcmlnaW4pCm1lYW4od2VpZ2h0KQptZWFuKHllYXIpCmBgYAoKYGBge3J9CnNkKG1wZykKc2QoY3lsaW5kZXJzKQpzZChhY2NlbGVyYXRpb24pCnNkKGRpc3BsYWNlbWVudCkKc2QoaG9yc2Vwb3dlcikKc2Qob3JpZ2luKQpzZCh3ZWlnaHQpCnNkKHllYXIpCmBgYAoKCgooZSkgVXNpbmcgdGhlIGZ1bGwgZGF0YSBzZXQsIGludmVzdGlnYXRlIHRoZSBwcmVkaWN0b3JzIGdyYXBoaWNhbGx5LAp1c2luZyBzY2F0dGVycGxvdHMgb3Igb3RoZXIgdG9vbHMgb2YgeW91ciBjaG9pY2UuIENyZWF0ZSBzb21lIHBsb3RzCmhpZ2hsaWdodGluZyB0aGUgcmVsYXRpb25zaGlwcyBhbW9uZyB0aGUgcHJlZGljdG9ycy4gQ29tbWVudApvbiB5b3VyIGZpbmRpbmdzLjxicj4KCipOw6NvIHNlaSBmYXplcioKCihmKSBTdXBwb3NlIHRoYXQgd2Ugd2lzaCB0byBwcmVkaWN0IGdhcyBtaWxlYWdlICggbXBnICkgb24gdGhlIGJhc2lzCm9mIHRoZSBvdGhlciB2YXJpYWJsZXMuIERvIHlvdXIgcGxvdHMgc3VnZ2VzdCB0aGF0IGFueSBvZiB0aGUKb3RoZXIgdmFyaWFibGVzIG1pZ2h0IGJlIHVzZWZ1bCBpbiBwcmVkaWN0aW5nIG1wZyA/IEp1c3RpZnkgeW91cgphbnN3ZXIuPGJyPgoKKlNlaSBuw6NvIHNlbmhvcioKCjEwLiBUaGlzIGV4ZXJjaXNlIGludm9sdmVzIHRoZSBCb3N0b24gaG91c2luZyBkYXRhIHNldC4KKGEpIFRvIGJlZ2luLCBsb2FkIGluIHRoZSBCb3N0b24gZGF0YSBzZXQuIFRoZSBCb3N0b24gZGF0YSBzZXQgaXMKcGFydCBvZiB0aGUgTUFTUyBsaWJyYXJ5IGluIFIgLjxicj4KPiBsaWJyYXJ5ICggTUFTUyApPGJyPgoKTm93IHRoZSBkYXRhIHNldCBpcyBjb250YWluZWQgaW4gdGhlIG9iamVjdCBCb3N0b24uIDxicj4KCj4gQm9zdG9uPGJyPgoKUmVhZCBhYm91dCB0aGUgZGF0YSBzZXQ6PGJyPgo+ID8gQm9zdG9uPGJyPgoKSG93IG1hbnkgcm93cyBhcmUgaW4gdGhpcyBkYXRhIHNldD8gSG93IG1hbnkgY29sdW1ucz8gV2hhdApkbyB0aGUgcm93cyBhbmQgY29sdW1ucyByZXByZXNlbnQ/PGJyPgooYikgTWFrZSBzb21lIHBhaXJ3aXNlIHNjYXR0ZXJwbG90cyBvZiB0aGUgcHJlZGljdG9ycyAoY29sdW1ucykgaW4KdGhpcyBkYXRhIHNldC4gRGVzY3JpYmUgeW91ciBmaW5kaW5ncy48YnI+CihjKSBBcmUgYW55IG9mIHRoZSBwcmVkaWN0b3JzIGFzc29jaWF0ZWQgd2l0aCBwZXIgY2FwaXRhIGNyaW1lIHJhdGU/CklmIHNvLCBleHBsYWluIHRoZSByZWxhdGlvbnNoaXAuPGJyPgooZCkgRG8gYW55IG9mIHRoZSBzdWJ1cmJzIG9mIEJvc3RvbiBhcHBlYXIgdG8gaGF2ZSBwYXJ0aWN1bGFybHkKaGlnaCBjcmltZSByYXRlcz8gVGF4IHJhdGVzPyBQdXBpbC10ZWFjaGVyIHJhdGlvcz8gQ29tbWVudCBvbgp0aGUgcmFuZ2Ugb2YgZWFjaCBwcmVkaWN0b3IuPGJyPgooZSkgSG93IG1hbnkgb2YgdGhlIHN1YnVyYnMgaW4gdGhpcyBkYXRhIHNldCBib3VuZCB0aGUgQ2hhcmxlcwpyaXZlcj88YnI+CihmKSBXaGF0IGlzIHRoZSBtZWRpYW4gcHVwaWwtdGVhY2hlciByYXRpbyBhbW9uZyB0aGUgdG93bnMgaW4gdGhpcwpkYXRhIHNldD88YnI+CihnKSBXaGljaCBzdWJ1cmIgb2YgQm9zdG9uIGhhcyBsb3dlc3QgbWVkaWFuIHZhbHVlIG9mIG93bmVyLQpvY2N1cGllZCBob21lcz8gV2hhdCBhcmUgdGhlIHZhbHVlcyBvZiB0aGUgb3RoZXIgcHJlZGljdG9ycwpmb3IgdGhhdCBzdWJ1cmIsIGFuZCBob3cgZG8gdGhvc2UgdmFsdWVzIGNvbXBhcmUgdG8gdGhlIG92ZXJhbGwKcmFuZ2VzIGZvciB0aG9zZSBwcmVkaWN0b3JzPyBDb21tZW50IG9uIHlvdXIgZmluZGluZ3MuPGJyPgooaCkgSW4gdGhpcyBkYXRhIHNldCwgaG93IG1hbnkgb2YgdGhlIHN1YnVyYnMgYXZlcmFnZSBtb3JlIHRoYW4Kc2V2ZW4gcm9vbXMgcGVyIGR3ZWxsaW5nPyBNb3JlIHRoYW4gZWlnaHQgcm9vbXMgcGVyIGR3ZWxsaW5nPwpDb21tZW50IG9uIHRoZSBzdWJ1cmJzIHRoYXQgYXZlcmFnZSBtb3JlIHRoYW4gZWlnaHQgcm9vbXMKcGVyIGR3ZWxsaW5nLgoK