Question 7

In this problem, you will use support vector approaches in order to predict whether a given car gets high or low gas mileage based on the Auto data set.

A.) Create a binary variable that takes on a 1 for cars with gas mileage above the median, and a 0 for cars with gas mileage below the median.

library(ISLR)
gas.med = median(Auto$mpg)
new.var = ifelse(Auto$mpg > gas.med, 1, 0)
Auto$mpglevel = as.factor(new.var)

B.) Fit a support vector classifier to the data with various values of cost, in order to predict whether a car gets high or low gas mileage. Report the cross-validation errors associated with different values of this parameter. Comment on your results.

library(e1071)
## Warning: package 'e1071' was built under R version 3.5.3
set.seed(3255)
tune.out = tune(svm, mpglevel ~ ., data = Auto, kernel = "linear", ranges = list(cost = c(0.01, 0.1, 1, 5, 10, 100)))
summary(tune.out)
## 
## Parameter tuning of 'svm':
## 
## - sampling method: 10-fold cross validation 
## 
## - best parameters:
##  cost
##     1
## 
## - best performance: 0.01282051 
## 
## - Detailed performance results:
##    cost      error dispersion
## 1 1e-02 0.07384615 0.04219942
## 2 1e-01 0.04083333 0.03008810
## 3 1e+00 0.01282051 0.02179068
## 4 5e+00 0.01538462 0.02477158
## 5 1e+01 0.02044872 0.02354784
## 6 1e+02 0.03070513 0.02357884

C.) Now repeat (b), this time using SVMs with radial and polynomial basis kernels, with different values of gamma and degree and cost. Comment on your results.

set.seed(21)
tune.out = tune(svm, mpglevel ~ ., data = Auto, kernel = "polynomial", ranges = list(cost = c(0.1, 1, 5, 10), degree = c(2, 3, 4)))
summary(tune.out)
## 
## Parameter tuning of 'svm':
## 
## - sampling method: 10-fold cross validation 
## 
## - best parameters:
##  cost degree
##    10      2
## 
## - best performance: 0.5508974 
## 
## - Detailed performance results:
##    cost degree     error dispersion
## 1   0.1      2 0.5867308 0.07310319
## 2   1.0      2 0.5867308 0.07310319
## 3   5.0      2 0.5867308 0.07310319
## 4  10.0      2 0.5508974 0.11697667
## 5   0.1      3 0.5867308 0.07310319
## 6   1.0      3 0.5867308 0.07310319
## 7   5.0      3 0.5867308 0.07310319
## 8  10.0      3 0.5867308 0.07310319
## 9   0.1      4 0.5867308 0.07310319
## 10  1.0      4 0.5867308 0.07310319
## 11  5.0      4 0.5867308 0.07310319
## 12 10.0      4 0.5867308 0.07310319
set.seed(463)
tune.out = tune(svm, mpglevel ~ ., data = Auto, kernel = "radial", ranges = list(cost = c(0.1, 1, 5, 10), gamma = c(0.01, 0.1, 1, 5, 10, 100)))
summary(tune.out)
## 
## Parameter tuning of 'svm':
## 
## - sampling method: 10-fold cross validation 
## 
## - best parameters:
##  cost gamma
##    10  0.01
## 
## - best performance: 0.02288462 
## 
## - Detailed performance results:
##    cost gamma      error dispersion
## 1   0.1 1e-02 0.08916667 0.04526330
## 2   1.0 1e-02 0.07397436 0.03896185
## 3   5.0 1e-02 0.05102564 0.03813274
## 4  10.0 1e-02 0.02288462 0.03286718
## 5   0.1 1e-01 0.07903846 0.04724112
## 6   1.0 1e-01 0.05602564 0.03950993
## 7   5.0 1e-01 0.02801282 0.02231663
## 8  10.0 1e-01 0.02551282 0.02093755
## 9   0.1 1e+00 0.55102564 0.03813274
## 10  1.0 1e+00 0.06365385 0.04199145
## 11  5.0 1e+00 0.06108974 0.04358351
## 12 10.0 1e+00 0.06108974 0.04358351
## 13  0.1 5e+00 0.55102564 0.03813274
## 14  1.0 5e+00 0.48717949 0.03963085
## 15  5.0 5e+00 0.49224359 0.04525523
## 16 10.0 5e+00 0.49224359 0.04525523
## 17  0.1 1e+01 0.55102564 0.03813274
## 18  1.0 1e+01 0.50506410 0.04235779
## 19  5.0 1e+01 0.49993590 0.04269277
## 20 10.0 1e+01 0.49993590 0.04269277
## 21  0.1 1e+02 0.55102564 0.03813274
## 22  1.0 1e+02 0.55102564 0.03813274
## 23  5.0 1e+02 0.55102564 0.03813274
## 24 10.0 1e+02 0.55102564 0.03813274

D.) Make some plots to justify (C) and (D)

svm.linear = svm(mpglevel ~ ., data = Auto, kernel = "linear", cost = 1)
svm.poly = svm(mpglevel ~ ., data = Auto, kernel = "polynomial", cost = 10, 
    degree = 2)
svm.radial = svm(mpglevel ~ ., data = Auto, kernel = "radial", cost = 10, gamma = 0.01)
plotpairs = function(fit) {
    for (name in names(Auto)[!(names(Auto) %in% c("mpg", "mpglevel", "name"))]) {
        plot(fit, Auto, as.formula(paste("mpg~", name, sep = "")))
    }
}
plotpairs(svm.linear)

plotpairs(svm.poly)

plotpairs(svm.radial)

Question 8

This problem involves the OJ data set which is part of the ISLR package.

A.) Create a training set containing a random sample of 800 observations, and a test set containing the remaining observations.

library(ISLR)
set.seed(9004)
train = sample(dim(OJ)[1], 800)
OJ.train = OJ[train, ]
OJ.test = OJ[-train, ]

B.) Fit a support vector classifier to the training data using cost=0.01, with Purchase as the response and the other variables as predictors. Use the summary() function to produce summary statistics, and describe the results obtained.

library(e1071)
svm.linear = svm(Purchase ~ ., kernel = "linear", data = OJ.train, cost = 0.01)
summary(svm.linear)
## 
## Call:
## svm(formula = Purchase ~ ., data = OJ.train, kernel = "linear", 
##     cost = 0.01)
## 
## 
## Parameters:
##    SVM-Type:  C-classification 
##  SVM-Kernel:  linear 
##        cost:  0.01 
##       gamma:  0.05555556 
## 
## Number of Support Vectors:  432
## 
##  ( 217 215 )
## 
## 
## Number of Classes:  2 
## 
## Levels: 
##  CH MM

C.) What are the training and test error rates?

train.pred = predict(svm.linear, OJ.train)
table(OJ.train$Purchase, train.pred)
##     train.pred
##       CH  MM
##   CH 439  53
##   MM  82 226
(82 + 53)/(439 + 53 + 82 + 226)
## [1] 0.16875
test.pred = predict(svm.linear, OJ.test)
table(OJ.test$Purchase, test.pred)
##     test.pred
##       CH  MM
##   CH 142  19
##   MM  29  80
(19 + 29)/(142 + 19 + 29 + 80)
## [1] 0.1777778

The training and testing errors are listed above.

D.) Use the tune() function to select an optimal cost. Consider values in the range 0.01 to 10.

set.seed(1554)
tune.out = tune(svm, Purchase ~ ., data = OJ.train, kernel = "linear", ranges = list(cost = 10^seq(-2, 1, by = 0.25)))
summary(tune.out)
## 
## Parameter tuning of 'svm':
## 
## - sampling method: 10-fold cross validation 
## 
## - best parameters:
##       cost
##  0.3162278
## 
## - best performance: 0.16875 
## 
## - Detailed performance results:
##           cost   error dispersion
## 1   0.01000000 0.16875 0.03691676
## 2   0.01778279 0.16875 0.03397814
## 3   0.03162278 0.17125 0.03230175
## 4   0.05623413 0.17250 0.03162278
## 5   0.10000000 0.17000 0.03291403
## 6   0.17782794 0.17125 0.03335936
## 7   0.31622777 0.16875 0.03498512
## 8   0.56234133 0.17000 0.03129164
## 9   1.00000000 0.16875 0.03397814
## 10  1.77827941 0.16875 0.03240906
## 11  3.16227766 0.16875 0.03294039
## 12  5.62341325 0.17125 0.03120831
## 13 10.00000000 0.17125 0.03283481

E.) Compute the training and test error rates using this new value for cost.

svm.linear = svm(Purchase ~ ., kernel = "linear", data = OJ.train, cost = tune.out$best.parameters$cost)
train.pred = predict(svm.linear, OJ.train)

table(OJ.train$Purchase, train.pred)
##     train.pred
##       CH  MM
##   CH 435  57
##   MM  71 237
(57 + 71)/(435 + 57 + 71 + 237)
## [1] 0.16
test.pred = predict(svm.linear, OJ.test)
table(OJ.test$Purchase, test.pred)
##     test.pred
##       CH  MM
##   CH 141  20
##   MM  29  80
(29 + 20)/(141 + 20 + 29 + 80)
## [1] 0.1814815

The testing and training error are listed above.

F.) Repeat parts (b) through (e) using a support vector machine with a radial kernel. Use the default value for gamma.

set.seed(410)
svm.radial = svm(Purchase ~ ., data = OJ.train, kernel = "radial")
summary(svm.radial)
## 
## Call:
## svm(formula = Purchase ~ ., data = OJ.train, kernel = "radial")
## 
## 
## Parameters:
##    SVM-Type:  C-classification 
##  SVM-Kernel:  radial 
##        cost:  1 
##       gamma:  0.05555556 
## 
## Number of Support Vectors:  367
## 
##  ( 184 183 )
## 
## 
## Number of Classes:  2 
## 
## Levels: 
##  CH MM
train.pred = predict(svm.radial, OJ.train)
table(OJ.train$Purchase, train.pred)
##     train.pred
##       CH  MM
##   CH 452  40
##   MM  78 230
(40 + 78)/(452 + 40 + 78 + 230)
## [1] 0.1475
test.pred = predict(svm.radial, OJ.test)
table(OJ.test$Purchase, test.pred)
##     test.pred
##       CH  MM
##   CH 146  15
##   MM  27  82
(27 + 15)/(146 + 15 + 27 + 82)
## [1] 0.1555556

Training and test error for radial listed above. We can see that it is a slight improvement from the linear model before.

set.seed(755)
tune.out = tune(svm, Purchase ~ ., data = OJ.train, kernel = "radial", ranges = list(cost = 10^seq(-2, 1, by = 0.25)))
summary(tune.out)
## 
## Parameter tuning of 'svm':
## 
## - sampling method: 10-fold cross validation 
## 
## - best parameters:
##       cost
##  0.5623413
## 
## - best performance: 0.165 
## 
## - Detailed performance results:
##           cost   error dispersion
## 1   0.01000000 0.38500 0.06258328
## 2   0.01778279 0.38500 0.06258328
## 3   0.03162278 0.37625 0.06908379
## 4   0.05623413 0.21000 0.03855011
## 5   0.10000000 0.18625 0.03143004
## 6   0.17782794 0.18375 0.03230175
## 7   0.31622777 0.17125 0.03438447
## 8   0.56234133 0.16500 0.03763863
## 9   1.00000000 0.17500 0.03584302
## 10  1.77827941 0.17375 0.04059026
## 11  3.16227766 0.17625 0.03747684
## 12  5.62341325 0.17625 0.03839216
## 13 10.00000000 0.17375 0.03458584
svm.radial = svm(Purchase ~ ., data = OJ.train, kernel = "radial", cost = tune.out$best.parameters$cost)
train.pred = predict(svm.radial, OJ.train)
table(OJ.train$Purchase, train.pred)
##     train.pred
##       CH  MM
##   CH 452  40
##   MM  77 231
(77 + 40)/(452 + 40 + 77 + 231)
## [1] 0.14625
test.pred = predict(svm.radial, OJ.test)
table(OJ.test$Purchase, test.pred)
##     test.pred
##       CH  MM
##   CH 146  15
##   MM  28  81
(28 + 15)/(146 + 15 + 28 + 81)
## [1] 0.1592593

Tuning slightly decreases training error to 14.6% and slightly increases test error to 16%

G.) Repeat parts (b) through (e) using a support vector machine with a polynomial kernel. Set degree=2.

set.seed(8000)
svm.poly = svm(Purchase ~ ., data = OJ.train, kernel = "poly", degree = 2)
summary(svm.poly)
## 
## Call:
## svm(formula = Purchase ~ ., data = OJ.train, kernel = "poly", 
##     degree = 2)
## 
## 
## Parameters:
##    SVM-Type:  C-classification 
##  SVM-Kernel:  polynomial 
##        cost:  1 
##      degree:  2 
##       gamma:  0.05555556 
##      coef.0:  0 
## 
## Number of Support Vectors:  452
## 
##  ( 232 220 )
## 
## 
## Number of Classes:  2 
## 
## Levels: 
##  CH MM
train.pred = predict(svm.poly, OJ.train)
table(OJ.train$Purchase, train.pred)
##     train.pred
##       CH  MM
##   CH 460  32
##   MM 105 203
(32 + 105)/(460 + 32 + 105 + 203)
## [1] 0.17125
test.pred = predict(svm.poly, OJ.test)
table(OJ.test$Purchase, test.pred)
##     test.pred
##       CH  MM
##   CH 149  12
##   MM  37  72
(12 + 37)/(149 + 12 + 37 + 72)
## [1] 0.1814815

This produces a train error of 17.1% and a test error of 18.1% which are slightly higher than the errors produces by radial but lower than the errors produced by linear.

set.seed(300)
tune.out = tune(svm, Purchase ~ ., data = OJ.train, kernel = "poly", degree = 2, 
    ranges = list(cost = 10^seq(-2, 1, by = 0.25)))
summary(tune.out)
## 
## Parameter tuning of 'svm':
## 
## - sampling method: 10-fold cross validation 
## 
## - best parameters:
##      cost
##  5.623413
## 
## - best performance: 0.17875 
## 
## - Detailed performance results:
##           cost   error dispersion
## 1   0.01000000 0.38500 0.04281744
## 2   0.01778279 0.36750 0.03496029
## 3   0.03162278 0.35750 0.03641962
## 4   0.05623413 0.34500 0.03238227
## 5   0.10000000 0.31250 0.03864008
## 6   0.17782794 0.25125 0.04226652
## 7   0.31622777 0.21500 0.04993051
## 8   0.56234133 0.20750 0.05210833
## 9   1.00000000 0.19875 0.04267529
## 10  1.77827941 0.18875 0.04730589
## 11  3.16227766 0.18375 0.04678927
## 12  5.62341325 0.17875 0.04788949
## 13 10.00000000 0.18750 0.04823265
svm.poly = svm(Purchase ~ ., data = OJ.train, kernel = "poly", degree = 2, cost = tune.out$best.parameters$cost)
train.pred = predict(svm.poly, OJ.train)
table(OJ.train$Purchase, train.pred)
##     train.pred
##       CH  MM
##   CH 455  37
##   MM  84 224
(37 + 84)/(455 + 37 + 84 + 224)
## [1] 0.15125
test.pred = predict(svm.poly, OJ.test)
table(OJ.test$Purchase, test.pred)
##     test.pred
##       CH  MM
##   CH 148  13
##   MM  34  75
(13 + 34)/(148 + 13 + 34 + 75)
## [1] 0.1740741

Tuning reduces the training error to 15.12% and test error to 17.4% which is worse than radial but better than linear .

H.) Overall, which approach seems to give the best results on this data?

Overall, radial seems to be the best option with lowest errors.