__________________________________________________________________________________________________________________________
\[ u_{*}=\sqrt{\frac{\tau}{\rho}} \] \[ \tau=u_*^2\rho \] \[ \tau=0.05^2 \cdot 1000 \] \[ \tau=2.5 \ N/m² \]
\[ \Theta=\frac{\tau}{(\gamma_s-\gamma)d} \] \[ \Theta=\frac{2.5}{(25996.5-9810)d} \] \[ \Theta=\frac{2.5}{(16186.5)d} \]
\[ \Theta_c=\frac{0.273}{1+1.2D_*}+0.046(1-0.576e^{-0.02D_*}) \]
\[ D_*=d\Bigg[\Bigg(\frac{\rho_s}{\rho}-1\Bigg)\frac{g}{\nu^2}\Bigg]^{1/3} \] \(\rho_s=2650 kg/m³\)
\(\rho=1000 kg/m³\)
\(g=9.81m/s²\)
\(\nu=10^{-6}\)
\[ \frac{0.273}{1+1.2d\Bigg[\Bigg(\frac{\rho_s}{\rho}-1\Bigg)\frac{g}{\nu^2}\Bigg]^{1/3}}+0.046\Bigg(1-0.576exp\Bigg[-0.02d\Bigg[\Bigg(\frac{\rho_s}{\rho}-1\Bigg)\frac{g}{\nu^2}\Bigg]\Bigg)\Bigg]^{1/3}\Bigg)=\frac{2.5}{(16186.5)d} \]
\[ d=0.00349\ m=3.49\ mm \]
\[ p_{hk}=\sum_{j=1}^Np_{bj}\frac{d_j}{d_k+d_j} \] \[ p_{ek}=\sum_{j=1}^Np_{bj}\frac{d_k}{d_k+d_j} \]
\[ p_{h1}=0.3\frac{0.05}{0.05+0.05}+0.4\frac{0.5}{0.05+0.5}+0.3\frac{5}{0.05+5} \] \[ p_{h1}=0.81 \]
\[ p_{e1}=0.3\frac{0.05}{0.05+0.05}+0.4\frac{0.05}{0.05+0.5}+0.3\frac{0.05}{0.05+5} \]
\[ p_{e1}=0.19 \]
\[ p_{h2}=0.3\frac{0.05}{0.5+0.05}+0.4\frac{0.5}{0.5+0.5}+0.3\frac{5}{0.5+5} \] \[ p_{h2}=0.5 \]
\[ p_{e2}=0.3\frac{0.5}{0.5+0.05}+0.4\frac{0.5}{0.5+0.5}+0.3\frac{0.5}{0.5+5} \]
\[ p_{e2}=0.5 \]
\[ p_{h3}=0.3\frac{0.05}{5+0.05}+0.4\frac{0.5}{5+0.5}+0.3\frac{5}{5+5} \] \[ p_{h3}=0.19 \]
\[ p_{e3}=0.3\frac{5}{5+0.05}+0.4\frac{5}{5+0.5}+0.3\frac{5}{5+5} \]
\[ p_{e3}=0.91 \]
\[ \frac{\tau_{ck}}{(\gamma_s-\gamma)d_k}=\Theta_c\Bigg(\frac{p_{ek}}{p_{hk}}\Bigg)^{-m} \]
\[ \frac{\tau_{c1}}{(25996.5-9810)0.00005}=0.03\Bigg(\frac{0.19}{0.81}\Bigg)^{-0.6} \]
\[ \tau_{c1}=0.058\ N/m² \]
\[ \frac{\tau_{c2}}{(25996.5-9810)0.0005}=0.03\Bigg(\frac{0.5}{0.5}\Bigg)^{-0.6} \]
\[ \tau_{c2}=0.24\ N/m² \]
\[ \frac{\tau_{c3}}{(25996.5-9810)0.005}=0.03\Bigg(\frac{0.81}{0.19}\Bigg)^{-0.6} \]
\[ \tau_{c2}=1.02\ N/m² \]
\[ \Theta_c=\frac{0.24}{D_*}+0.055(1-e^{-D_*/50}) \]
\[ \Theta_c=\frac{0.273}{1+1.2D_*}+0.046(1-0.576e^{-0.02D_*}) \]
\[ A_c=0.215+\frac{6.79}{D_*^{1.7}}-0.075e^{-0.00262D_*} \]
\[ A_c=\frac{u_{*c}}{\omega_s} \] \[ u_{*c}=A_c \cdot \omega_s \]
\[ \omega_s=\frac{\nu}{d}\Bigg(\sqrt{(25+1.2D_*^2)}-5\Bigg)^{1.5} \]
\[ d=\frac{D_*}{\Bigg[\Bigg(\frac{\rho_s}{\rho}-1\Bigg)\frac{g}{\nu^2}\Bigg]^{1/3}} \]
\[ u_*=\sqrt{\frac{\tau}{\rho}} \] \[ \tau=u_*^2\cdot\rho \]
\[ \Theta=\frac{\tau}{(\gamma_s-\gamma)d} \] \[ \Theta=\frac{u_*^2\cdot\rho}{(\gamma_s-\gamma)d} \] \[ \Theta=\frac{(A_c \cdot \omega_s)^2\cdot\rho}{(\gamma_s-\gamma)d} \]
paphitis<-function(D)
{
theta=0.273/(1+1.2*D)+0.046*(1-0.576*exp(-0.02*D))
return(theta)
}
soulsby<-function(D)
{
theta=0.24/D+0.055*(1-exp(-D/50))
return(theta)
}
simoes<-function(D)
{
A=0.215+6.79/(D^1.7)-0.075*exp(-0.00262*D)
omega=(1/1000000)/((D)/((2.65-1)*9.81/(1/1000000)^2)^(1/3))*(sqrt(25+1.2*D^2)-5)^1.5
ustar=(A*omega)
theta=ustar^2*1000/((25996.5-9810)*((D)/((2.65-1)*9.81/(1/1000000)^2)^(1/3)))
return(theta)
}
D=seq(from=0.01,to=10000,by=0.1)
ypaphitis=paphitis(D)
ysoulsby=soulsby(D)
ysimoes=simoes(D)
source("https://raw.githubusercontent.com/petrkeil/Blog/master/2016_07_05_Log_scales/loglogplot.r")
loglog.plot(xlab="D*", ylab=expression(paste(Theta)), ylim=c(0.0001, 0.5),xlim=c(1,10000))
lines(log(D),log(ysoulsby),lty=1,col="red",lwd=1.5)
lines(log(D),log(ypaphitis),lty=4,col="blue",lwd=1.5)
points(log(D),log(ysimoes),pch=15)
legend("top",c("Soulsby (1997)","Paphitis (2011)","Simões (2014)"),pch=c(NA,NA,15),col=c("red","blue","black"),lty=c(1,4,NA),lwd=c(1.5,1.5,NA))
\[ D_*=d\Bigg[\Bigg(\frac{\rho_s}{\rho}-1\Bigg)\frac{g}{\nu^2}\Bigg]^{1/3} \] \[ D_*=2529.6 \]
\[ \frac{\tau_{c}}{(\gamma_s-\gamma)d}=0.052 \]
\[ \frac{\tau_{c}}{(25996.5-9810)0.1}=0.052 \] \[ \tau_{c}=84.17\ N/m² \]
\[ \phi_r=32.5+1.27d \] \[ \phi_r=32.5+1.27\cdot 10 \] \[ \phi_r=45.2 \ degrees \]
\[ \beta=atan(1/2) \] \[ \beta=26.6\ degrees \]
\[ \tau_{c\phi}=\tau_c\sqrt{1-\frac{sin^2{(\beta)}}{\sin^2(\phi_r)}} \] \[ \tau_{c\phi}=84.17\sqrt{1-\frac{sin^2{(26.6)}}{sin^2(45.2)}} \] \[ \tau_{c\phi}=65.30 \ N/m² \]