Terry Leitch
Copyright © 2018 T Leitch & J Liew
Consider:
Hedge Fund Manager A with a Sharpe Ratio of 2.0 vs Hedge Fund Manager B with a Sharpe Ratio of 1.5
Which one should we invest in?
“Do Hedge Funds Hedge?” by Asness et al
Simple regression shows modest market exposure and positive value added
But, this is very misleading…
Once lagged betas are employed, find that hedge funds do not add value over this period
Notice that monthly versus quarterly estimates of annualized standard deviation differ.
Notice that monthly versus quarterly estimates of annualized standard deviation differ.
Sharpe-Lintner’s CAPM:
\[R_{i,t} = \alpha_{i} + \beta_{i}R_{m,t} + \varepsilon_{i,t}\]
Fama-French’s 3 Factor Model:
\[R_{i,t} = \alpha_{i} + \beta_{i}R_{m,t} + s_{i}SMB_{t}+ h_{i}HML_{t} + \varepsilon_{i,t}\]
Carhart’s Model:
\[R_{i,t} = \alpha_{i} + \beta_{i}R_{m,t} + s_{i}SMB_{t}+ h_{i}HML_{t} + m_{i}WML_{t} + \varepsilon_{i,t}\]
Lagged Betas
Apply Scholes and Williams (1977) and Dimson (1979) simple techniques
\[R_{i,t} = \alpha_{i} + \beta_{0i}R_{m,t} + \beta_{1i}R_{m,t-1} + \beta_{2i}R_{m,t-2} + \beta_{3i}R_{m,t-3}+...+\varepsilon_{i,t}\]
\[\alpha_{i} = R_{i,t} - \beta_{i}R_{m,t} - \varepsilon_{i,t}\]
\[\alpha_{i} = R_{i,t} - \beta_{i}R_{m,t} - s_{i}SMB_{t}- h_{i}HML_{t} -\varepsilon_{i,t}\]
Optimise for Sharpe by minimizing \(sigma(P)\)
\[R_{i,t} = \alpha_{i} + \beta_{i}R_{m,t} + \varepsilon_{i,t}\]
library("PeerPerformance", lib.loc="~/R/x86_64-pc-linux-gnu-library/3.4")
hfrets=readRDS("data/hfrets.rds")[,1:10]
## Sharpe screening
knitr::kable(cbind(HFname=colnames(hfrets),outperform=sharpeScreening(hfrets, control = list(nCore = 1))$pipos))
HFname | outperform |
---|---|
HFI | 0.342530214857394 |
Converts | 0.0639887827529013 |
ShortBias | 0 |
EMF | 0.0535714285714285 |
EquityNeutral | 0.0357175189862533 |
EventDriven | 0.75 |
Distressed | 0.810604178476874 |
MultiSstrat | 0.390557815378023 |
RiskArb | 0.728223365686532 |
FIArb | 0.181691935263858 |
## Modified Sharpe screening
knitr::kable(cbind(HFname=colnames(hfrets),outperform=msharpeScreening(hfrets, control = list(nCore = 1))$pipos))
HFname | outperform |
---|---|
HFI | 0.16666071859529 |
Converts | 1 |
ShortBias | 0 |
EMF | 0.142857142857143 |
EquityNeutral | NA |
EventDriven | 0.527874016416601 |
Distressed | 0.73109243697479 |
MultiSstrat | 0.190476323564607 |
RiskArb | 0.509887933719684 |
FIArb | 0.65933703238995 |
## Alpha screening
ctr = list(nCore = 1)
knitr::kable(cbind(HFname=colnames(hfrets),outperform=alphaScreening(hfrets, control = ctr)$pipos))
HFname | outperform |
---|---|
HFI | 0.371079858404362 |
Converts | 0.320969238150623 |
ShortBias | 0 |
EMF | 0 |
EquityNeutral | 0 |
EventDriven | 0.682539682539683 |
Distressed | 1 |
MultiSstrat | 0.530482057108056 |
RiskArb | 0.193615434164776 |
FIArb | 0 |
[Ardia & Boudt 2 | 012](https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2000901) |
\[R_{i,t} = \alpha_{i} + \beta_{i}R_{m,t} + s_{i}SMB_{t}+ h_{i}HML_{t} + \varepsilon_{i,t}\]
library(quantmod)
source("http://www.stat.cmu.edu/~cschafer/MSCF/getFamaFrench.txt")
#Get Fama French factors
ffhold = getFamaFrench(from="2012-1-1", to="2012-6-30")
#Get Apple stock's data
AAPL=getSymbols("AAPL", from="2012-1-1", to="2012-6-30", auto.assign=F)
#Find excess return
ffhold$AAPLexret = 100*dailyReturn(AAPL) - ffhold$RF
#Multiple Linear Regression
ff3modAAPL = lm(AAPLexret ~ Mkt.RF + SMB + HML, data=ffhold)
#Summary of regression
summary(ff3modAAPL)
##
## Call:
## lm(formula = AAPLexret ~ Mkt.RF + SMB + HML, data = ffhold)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.0070 -0.8316 -0.0304 0.7718 5.0524
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.1925 0.1225 1.571 0.11883
## Mkt.RF 1.3574 0.1585 8.562 4.17e-14 ***
## SMB -0.8318 0.3095 -2.687 0.00821 **
## HML -1.9302 0.3097 -6.232 6.95e-09 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.364 on 121 degrees of freedom
## Multiple R-squared: 0.4736, Adjusted R-squared: 0.4606
## F-statistic: 36.29 on 3 and 121 DF, p-value: < 2.2e-16
## Compare with Sharpe Lintner
#Multiple Linear Regression
ff3modAAPL = lm(AAPLexret ~ Mkt.RF, data=ffhold)
#Summary of regression
summary(ff3modAAPL)
##
## Call:
## lm(formula = AAPLexret ~ Mkt.RF, data = ffhold)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2657 -0.9862 -0.1751 0.7242 7.0587
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.2184 0.1418 1.540 0.126
## Mkt.RF 1.1091 0.1597 6.947 1.92e-10 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.58 on 123 degrees of freedom
## Multiple R-squared: 0.2818, Adjusted R-squared: 0.2759
## F-statistic: 48.26 on 1 and 123 DF, p-value: 1.916e-10
\[R_{i,t} = \alpha_{i} + \beta_{i}R_{m,t} + s_{i}SMB_{t}+ h_{i}HML_{t} + m_{i}WML_{t} + \varepsilon_{i,t}\]
\[R_{i,t} = \alpha_{i} + \beta_{0i}R_{m,t} + \beta_{1i}R_{m,t-1} + \beta_{2i}R_{m,t-2} + \beta_{3i}R_{m,t-3}+...+\varepsilon_{i,t}\]
Differences do exist, and appear to be both statistically and economically significant.
Given that HF data was suspect, solid conclusions were not possible
Suppose you were working at an “active” fund of funds and tasked with coming up with arguments that blasted the “passive” HF indices, how would you build your case against these indices?
Pros | Cons |
---|---|
Easy passive investing (e.g. S&P500), prior evidence | Skilled managers are a minority (less than 30%) |
Low reputational risk | Indices are hidden risks, “beta-in-the-tails” |
Saves time! | FOFs with only 70% discernment can justify the fees |
Very cheap! (and money) | |
No connections, no problem! | |
Lower due diligence costs | |
Simple to explain to board |
“Skilled managers are in the minority”
- “Hedge Fund Index Investing Examined” questioned the notion of index investing as a prudent means to gain HF exposure
- Helped justify the 1%/10% that FOFs were charging at that time, yippee!
- Results were consistent with actual investors’ experiences in hedge fund index platforms
Reference:
The Effect of S&P500 Correlation on Hedge Fund Alpha, 2012, Jerome B. Baesel et al, The Journal of Wealth Management
Hedge Fund Benchmarking: Equity Correlation Regimes and Alpha, 2013, Jerome B. Baesel et al, Journal of Alternative Investments
Employ the 500 stocks in the S&P500 and compute all possible pair-wise correlations. Plot over time.
Cut into three regimes: (1) Normal, (2) High, and (3) Low
Data from Jan-1990 to Dec-2010
Assume that you want to put in $k > $1, into a risky investment that has a return of R.
Further assume the risk-free borrowing rate is Rf.
The levered returns is:
\[[\$1* R+(\$k-\$1)(R-Rf)]/\$1 = [\$* R-(\$k-\$1)* Rf]/\$1\]
since :
\[R+k* R-k* Rf-R+Rf = R(1+k-1)+Rf* (-k+1) = k* R-(k-1)* Rf\]