The domain is sales data. We want to find ā€œstrangeā€ transaction reports that may be fraudulent.

We want to provide a ā€œfraud probability rankingā€ for events that have already occurred.

We will look at several data mining tasks including: (1) outlier or anomaly detection;(2) clustering; and (3) semi-supervised prediction modeling.

Data is transactions reported by salespeople.They sell products and report these sales with a regular periodicity.

The methodology Will need to load DMwR package

library(DMwR)
## Warning: package 'DMwR' was built under R version 3.0.3
## Loading required package: lattice
## Warning: package 'lattice' was built under R version 3.0.3
## Loading required package: grid
## KernSmooth 2.23 loaded
## Copyright M. P. Wand 1997-2009

Then can load sales data:

data(sales)

Take a look:

head(sales)
##   ID Prod Quant   Val Insp
## 1 v1   p1   182  1665 unkn
## 2 v2   p1  3072  8780 unkn
## 3 v3   p1 20393 76990 unkn
## 4 v4   p1   112  1100 unkn
## 5 v3   p1  6164 20260 unkn
## 6 v5   p2   104  1155 unkn

How many rows?:

nrow(sales)
## [1] 401146

How is data structured?

nrow(sales)
## [1] 401146

ID - a factor, ID of salesman Prod - a factor, ID of the sold product Quant - number of reported sold units of product Val - reported total monetary value of the sale Insp - Factor, 3 possible values: (1) ok, if transaction inspected and determined to be valid; (2) fraud, is found to be fraudulent;and (3) unk if unknown (not inspected yet)

Exploring the data set

Overview of statistical properties of data:

summary(sales)
##        ID              Prod            Quant                Val         
##  v431   : 10159   p1125  :  3923   Min.   :      100   Min.   :   1005  
##  v54    :  6017   p3774  :  1824   1st Qu.:      107   1st Qu.:   1345  
##  v426   :  3902   p1437  :  1720   Median :      168   Median :   2675  
##  v1679  :  3016   p1917  :  1702   Mean   :     8442   Mean   :  14617  
##  v1085  :  3001   p4089  :  1598   3rd Qu.:      738   3rd Qu.:   8680  
##  v1183  :  2642   p2742  :  1519   Max.   :473883883   Max.   :4642955  
##  (Other):372409   (Other):388860   NA's   :13842       NA's   :1182     
##     Insp       
##  ok   : 14462  
##  unkn :385414  
##  fraud:  1270  
##                
##                
##                
## 

have bunches of salespeople

nlevels(sales$ID)
## [1] 6016

and lots of unique products

nlevels(sales$Prod)
## [1] 4548

We check if Quant and Val are both missing together much (sum returns number 888)

sum(is.na(sales$Quant) & is.na(sales$Val))
## [1] 888

From summary() results, look at distribution of values in inspection column…proportion of frauds is relatively low, even if we only take into account the reports that were inspected (about 0.003166)

table(sales$Insp)/nrow(sales)*100
## 
##        ok      unkn     fraud 
##  3.605171 96.078236  0.316593

We look at number of transactions per salesperson.If there is much variability, also if we look at number of transactions per product

Set up table for counts of transactions per salesperson:

(totS <- table(sales$ID))
## 
##    v1    v2    v3    v4    v5    v6    v7    v8    v9   v10   v11   v12 
##    96    50    26   549    33    61    34    89    86   683    43   246 
##   v13   v14   v15   v16   v17   v18   v19   v20   v21   v22   v23   v24 
##    61   188   532   115   158   260  1355    48   118   409   391   176 
##   v25   v26   v27   v28   v29   v30   v31   v32   v33   v34   v35   v36 
##   624    15   253    49  1068    44     8     8     9     6   105     4 
##   v37   v38   v39   v40   v41   v42   v43   v44   v45   v46   v47   v48 
##    29     6  2412     8    59   120  1604  1982  1572   105    57   255 
##   v49   v50   v51   v52   v53   v54   v55   v56   v57   v58   v59   v60 
##   156   630    43     3    27  6017    52    53    10    52   104    11 
##   v61   v62   v63   v64   v65   v66   v67   v68   v69   v70   v71   v72 
##    28    47    21    37     1     7   173    36    46    79    32     4 
##   v73   v74   v75   v76   v77   v78   v79   v80   v81   v82   v83   v84 
##     2    27   395   154   264   197   214   348    60   107    42    71 
##   v85   v86   v87   v88   v89   v90   v91   v92   v93   v94   v95   v96 
##   126   153     7    44    75    55    58    36    79    84    77   346 
##   v97   v98   v99  v100  v101  v102  v103  v104  v105  v106  v107  v108 
##    24   126    14    17    40    26    59    20    33    82    38     6 
##  v109  v110  v111  v112  v113  v114  v115  v116  v117  v118  v119  v120 
##    73   483   228    21    62     7    17   270     4    15     8    77 
##  v121  v122  v123  v124  v125  v126  v127  v128  v129  v130  v131  v132 
##    38    53    92    22    79    55    40    37   110   388  1558     5 
##  v133  v134  v135  v136  v137  v138  v139  v140  v141  v142  v143  v144 
##    32    68    37    32    12    16    49    60    52    21   112    67 
##  v145  v146  v147  v148  v149  v150  v151  v152  v153  v154  v155  v156 
##    40   317    21    62    45    47   100  1900     5   309   116    89 
##  v157  v158  v159  v160  v161  v162  v163  v164  v165  v166  v167  v168 
##    68    61    14   146    91    26   109    37   176     6    43    37 
##  v169  v170  v171  v172  v173  v174  v175  v176  v177  v178  v179  v180 
##   525    13    53     7    40    28    15   119    49    19    25    59 
##  v181  v182  v183  v184  v185  v186  v187  v188  v189  v190  v191  v192 
##   241    57    47    88     6   652    10    20    22     3    31     9 
##  v193  v194  v195  v196  v197  v198  v199  v200  v201  v202  v203  v204 
##    19   129    32    64     3    89   169    59   100    56   168    36 
##  v205  v206  v207  v208  v209  v210  v211  v212  v213  v214  v215  v216 
##   121    24    60    36    17   100    42    71    95   253    78    76 
##  v217  v218  v219  v220  v221  v222  v223  v224  v226  v227  v228  v229 
##    14    57     4     4     7    30    59     5    69    43    18    32 
##  v230  v231  v232  v233  v234  v235  v236  v237  v238  v239  v240  v241 
##   115     5    14    28   112    55   100    11    38    12    41    17 
##  v242  v243  v244  v245  v246  v247  v248  v249  v250  v251  v252  v253 
##    62   114    13    87    20     7    20     9   650   643   519  1291 
##  v254  v255  v256  v257  v258  v259  v260  v261  v262  v263  v264  v265 
##   176    55    50    14    15    21   865     6    64    15   507   135 
##  v266  v267  v268  v269  v270  v271  v272  v273  v274  v275  v276  v277 
##    22    52    11    57     3     5    22     5     8     8   151  1126 
##  v278  v279  v280  v281  v282  v283  v284  v285  v286  v287  v288  v289 
##   153    97   126    61    78    20    84   106   155    72   358   160 
##  v290  v291  v292  v293  v294  v295  v296  v297  v298  v299  v300  v301 
##    29    52     9    31   121   120    51    43    59    52    62     9 
##  v302  v303  v304  v305  v306  v307  v308  v309  v310  v311  v312  v313 
##    10    20    55   357    50    28   107    13    29    27    18    18 
##  v314  v315  v316  v317  v318  v319  v320  v321  v322  v324  v325  v326 
##   236    37    10    92    33    74    22    13    35     3    11    13 
##  v327  v328  v329  v330  v331  v332  v333  v334  v335  v336  v337  v338 
##    20     3    14     3    53    49  1875    11    31     7    11     1 
##  v339  v340  v341  v342  v343  v344  v345  v346  v347  v348  v349  v350 
##    14     7    75     3    48    26    25     4    39    21   349    50 
##  v351  v352  v353  v354  v355  v356  v357  v358  v359  v360  v361  v362 
##     1    12   100   112   102  1344    25   146    56   374    53    15 
##  v363  v364  v365  v366  v367  v368  v369  v370  v371  v372  v373  v375 
##    34    97   115     7    44   127   163   484    74    33   199   367 
##  v376  v377  v378  v379  v380  v381  v383  v384  v385  v386  v387  v388 
##   209   367   313   153    26    36     7    18    28   101    31    11 
##  v389  v390  v391  v392  v393  v394  v395  v396  v397  v398  v399  v400 
##    71     7     8   269   140    26    83    25  1015    18    33    40 
##  v401  v402  v403  v404  v405  v406  v407  v408  v409  v410  v411  v412 
##    25    20    29    67    25    77    62    27   178    70    14   131 
##  v413  v414  v415  v416  v417  v418  v419  v420  v421  v422  v423  v424 
##    15    79    14   212   332   100   348   140   147   748   108   119 
##  v425  v426  v427  v428  v429  v430  v431  v432  v433  v434  v435  v436 
##   284  3902   114    84   247    83 10159   902    72   454    29   147 
##  v437  v438  v439  v440  v441  v442  v443  v444  v445  v446  v447  v448 
##    21    47    86   282    38   196   271    94   108   111   219   175 
##  v449  v450  v451  v452  v453  v454  v455  v456  v457  v458  v459  v460 
##    38    85    75    51   600   357  1140   142    81   121    69    42 
##  v461  v462  v463  v464  v465  v466  v467  v468  v470  v471  v472  v473 
##    51   179    44   268   157    42   139   157   113   102  1459    58 
##  v474  v475  v476  v477  v478  v479  v480  v481  v482  v483  v484  v485 
##   124   189    24   312   109   358     7    21   113   302   174    54 
##  v486  v487  v488  v489  v490  v491  v492  v494  v495  v496  v497  v498 
##    54    36   136    40   392    12     7    14  1183   255   116   128 
##  v499  v500  v501  v502  v503  v504  v505  v506  v507  v508  v509  v510 
##    18    54    16   504    83    68    94   126    40    50    24    50 
##  v511  v512  v513  v514  v515  v516  v517  v518  v519  v520  v521  v522 
##    81    44    91    22   188   121    49   108    25    43    43   160 
##  v523  v524  v525  v526  v527  v528  v529  v530  v531  v532  v533  v534 
##   214    23   144    98    72    98   250    52   513    11    99   147 
##  v535  v536  v537  v538  v539  v540  v541  v542  v543  v544  v545  v546 
##     7   187    30   166   542    42    94    30   167    57    94    19 
##  v547  v548  v549  v550  v551  v552  v553  v554  v555  v556  v557  v558 
##    50    34   142     6    39     6   368    86    37    90    62    81 
##  v559  v560  v561  v562  v563  v564  v565  v566  v567  v568  v569  v570 
##   159    77    77   142    39   123     5   105    84    43   116    21 
##  v571  v572  v573  v574  v575  v576  v577  v578  v579  v580  v581  v582 
##    31    20    38    77    14   262    52    21    81    23   513    15 
##  v583  v584  v585  v586  v587  v588  v589  v590  v591  v592  v593  v594 
##   244    22     5    30    13    49    70   582    61     5   182   361 
##  v595  v596  v597  v598  v599  v600  v601  v602  v603  v604  v605  v606 
##     3  1168    80    83    12   365   171   131     7    96    54    88 
##  v607  v608  v609  v610  v611  v612  v613  v614  v615  v616  v617  v618 
##     6   117    14    28    18    49     2  2478   407     8   181    48 
##  v619  v620  v621  v622  v623  v624  v625  v626  v627  v628  v629  v630 
##    20    14   606    97    74     7     5    30    67    21   246   392 
##  v631  v632  v633  v634  v635  v636  v637  v638  v639  v640  v641  v642 
##    35    48    56    20    31    19    10     4   327   295    76    12 
##  v643  v644  v645  v646  v647  v648  v649  v650  v651  v652  v653  v654 
##    18   106   199    28    33    68   174    57   100    96     7   331 
##  v655  v656  v657  v658  v659  v660  v661  v662  v663  v664  v665  v666 
##    98   325    32    11     8   288   572   991   391   466    29    47 
##  v667  v668  v669  v670  v671  v672  v673  v674  v675  v676  v677  v678 
##   170    15    34    73   111   590    52    48    35   119   248    11 
##  v679  v680  v681  v682  v683  v684  v685  v686  v687  v688  v689  v690 
##    36    21    82    62    55   161    24    69   291    36    60    24 
##  v691  v692  v693  v694  v695  v696  v697  v698  v699  v700  v701  v702 
##    60   220    50    55    54   118    27    51    54    34   888    21 
##  v703  v704  v705  v706  v707  v708  v709  v710  v711  v712  v713  v714 
##   182    64   151    54   105     7    44   180   140   115    97    54 
##  v715  v716  v717  v718  v719  v720  v721  v722  v723  v724  v725  v726 
##    10   152    32    74    84    66    67     4    48    27    64    14 
##  v727  v728  v729  v730  v731  v732  v733  v734  v735  v736  v737  v738 
##   555    92    44    26   119    10   495   110    23    20    70    34 
##  v739  v740  v741  v742  v743  v744  v745  v746  v747  v748  v749  v750 
##  1412    70    63    58    11    17   114    40   556    20   593   212 
##  v751  v752  v753  v754  v755  v756  v757  v758  v759  v760  v761  v762 
##    33    43   119     8    42    87    50    77    10    14     7   193 
##  v763  v764  v765  v766  v767  v768  v769  v770  v771  v772  v773  v774 
##   111   427   250   417   117   138   142    36   501    19   149   110 
##  v775  v776  v777  v778  v779  v780  v781  v782  v783  v784  v785  v786 
##     8    26   499   117   130    48    72   127   433    44    14    68 
##  v787  v788  v789  v790  v791  v792  v793  v794  v795  v796  v797  v798 
##    98     3   716    71    15    15    30   108   187    92    91   269 
##  v799  v800  v801  v802  v803  v804  v805  v806  v807  v808  v809  v810 
##    72    32    27   117   907    21   135     2    24    24    92   327 
##  v811  v812  v813  v814  v815  v816  v817  v818  v819  v820  v821  v822 
##   111   128    50    33    15   193   189   366   840    54    32    53 
##  v823  v824  v825  v826  v827  v828  v829  v830  v831  v832  v833  v834 
##    26     4    25    37    28     8    49    66    37     8    57    22 
##  v835  v836  v837  v838  v839  v840  v841  v842  v843  v844  v845  v846 
##    66    80    92   233    71    88     8    27    10    82    37   145 
##  v847  v848  v849  v850  v851  v852  v853  v854  v855  v856  v857  v858 
##     4    59    28    82   241    16     1    92    12    91     5   185 
##  v859  v860  v861  v862  v863  v864  v865  v866  v867  v868  v869  v870 
##    10     6   437    19   130     4    30   123    92     6   156    46 
##  v871  v872  v873  v874  v875  v876  v877  v878  v879  v880  v881  v882 
##    62    46    23    18    19   559   194   433    24    23    49   254 
##  v883  v884  v885  v886  v887  v888  v889  v890  v891  v892  v893  v894 
##    10   156   117    72   107    31    43    48   234    74   110    30 
##  v895  v896  v897  v898  v899  v900  v901  v902  v903  v904  v905  v906 
##    42    47    18    16    13   209   175   146    52    10    22   241 
##  v907  v908  v909  v910  v911  v912  v913  v914  v915  v916  v917  v918 
##     9    60    71    91    50    26   143    35     6    95     6    64 
##  v919  v920  v921  v922  v923  v924  v925  v926  v927  v928  v929  v930 
##   102    41    18     5   275    24    10    31     7    23     5    41 
##  v931  v932  v933  v934  v935  v936  v937  v938  v939  v940  v941  v942 
##    36   127    34    12    88    34    28    28     9    14   101    27 
##  v943  v944  v945  v946  v947  v948  v949  v950  v951  v952  v953  v954 
##    23    17    15    51    80    36    24    62    17    20    19    11 
##  v955  v956  v957  v958  v959  v960  v961  v962  v963  v964  v965  v966 
##  1286   125   110   149    36    13    14    36    59    13    30    24 
##  v967  v968  v969  v970  v971  v972  v973  v974  v975  v976  v977  v978 
##    45     9    15     2   119   183    21    69    94   203   184    79 
##  v979  v980  v981  v982  v983  v984  v985  v986  v987  v988  v989  v990 
##   261   457    40   652    15   208   168    88    57   510    78   156 
##  v991  v992  v993  v994  v995  v996  v997  v998  v999 v1000 v1001 v1002 
##    25    55     4   157    78    11    72   123   125    62    27    21 
## v1003 v1004 v1005 v1006 v1007 v1008 v1009 v1010 v1011 v1012 v1013 v1014 
##    58   265   118    16    56    33   844    90     6    16    36   968 
## v1015 v1016 v1017 v1018 v1019 v1020 v1021 v1022 v1023 v1024 v1025 v1026 
##   549    42   113    23    16    42    36    31    93   105    17    95 
## v1027 v1028 v1029 v1030 v1031 v1032 v1033 v1034 v1035 v1036 v1037 v1038 
##    55    68    13    18   136    41   384   380    47    65    90    45 
## v1039 v1040 v1041 v1042 v1043 v1044 v1045 v1046 v1047 v1048 v1049 v1050 
##  1248   125    86    21   228    69     9     9    27    18    10    36 
## v1051 v1052 v1053 v1054 v1055 v1056 v1057 v1058 v1059 v1060 v1061 v1062 
##    53    81    29    27   265    55   177     9     6    23     6    11 
## v1063 v1064 v1065 v1066 v1067 v1068 v1069 v1070 v1071 v1072 v1073 v1074 
##   168    10     4     8     8    22    42   204    80    31    18    83 
## v1075 v1076 v1077 v1078 v1079 v1080 v1081 v1082 v1083 v1084 v1085 v1086 
##   335    52    25   190    30    88   671    35    33    81  3001    75 
## v1087 v1088 v1089 v1090 v1091 v1092 v1093 v1094 v1095 v1096 v1097 v1098 
##    49    46    16   138    36    66   140    98     8    43    97   131 
## v1099 v1100 v1101 v1102 v1103 v1104 v1105 v1106 v1107 v1108 v1109 v1110 
##    68    32    96    29    44    45    50    73   129    15   665    13 
## v1111 v1112 v1113 v1114 v1115 v1116 v1117 v1118 v1119 v1120 v1121 v1122 
##    38    37    68    20    58   115   106   145    68    12    50    88 
## v1123 v1124 v1125 v1126 v1127 v1128 v1129 v1130 v1131 v1132 v1133 v1134 
##     7    86    40    35   337   600    15   123   221   124   174   356 
## v1135 v1136 v1137 v1138 v1139 v1140 v1141 v1142 v1143 v1144 v1145 v1146 
##   130   126    43   227   714   235   398   455   378   295    30  1094 
## v1147 v1148 v1149 v1150 v1151 v1152 v1153 v1154 v1155 v1156 v1157 v1158 
##   247   598  1729   431    98   505   246   285   583   235    62   450 
## v1159 v1160 v1161 v1162 v1163 v1164 v1165 v1166 v1167 v1168 v1169 v1170 
##   328   103   823   132   146   149   119    51    30    37    69   106 
## v1171 v1172 v1173 v1174 v1175 v1176 v1177 v1178 v1179 v1180 v1181 v1182 
##   572  1487    88   263    15   137    76   211   284   131   115   118 
## v1183 v1184 v1185 v1186 v1187 v1188 v1189 v1190 v1191 v1192 v1193 v1194 
##  2642   162   108    80   106    10    81    55   112    42   102    33 
## v1195 v1196 v1197 v1198 v1199 v1200 v1201 v1202 v1203 v1204 v1205 v1206 
##   113   217    43    64     4   196   152    34    66    27    57    64 
## v1207 v1208 v1209 v1210 v1211 v1212 v1213 v1214 v1215 v1216 v1217 v1218 
##   207   201   217   846   323   104    35    49    81   178    76    80 
## v1219 v1220 v1221 v1222 v1223 v1224 v1225 v1226 v1227 v1228 v1229 v1230 
##    24   176    75    32   174    30     7   230   110    75    30    58 
## v1231 v1232 v1233 v1234 v1235 v1236 v1237 v1238 v1239 v1240 v1241 v1242 
##    84   151    54    80    39    26    58    62   202    21   270   301 
## v1243 v1244 v1245 v1246 v1247 v1248 v1249 v1250 v1251 v1252 v1253 v1254 
##   736   162    46    26   408   172   102    87    32   256    27    42 
## v1255 v1256 v1257 v1258 v1259 v1260 v1261 v1262 v1263 v1264 v1265 v1266 
##    15   219   101   194    92    50    48   250    34   112    19   232 
## v1267 v1268 v1269 v1270 v1271 v1272 v1273 v1274 v1275 v1276 v1277 v1278 
##    77    44    18    68    51    47    95   137    38   233    41    95 
## v1279 v1280 v1281 v1282 v1283 v1284 v1285 v1286 v1287 v1288 v1289 v1290 
##    19    47    27    52    30   140    58   164   133   106    73    46 
## v1291 v1292 v1293 v1294 v1295 v1296 v1297 v1298 v1299 v1300 v1301 v1302 
##    14   275   106   173   196   110   289   179   266   269   264   102 
## v1303 v1304 v1305 v1306 v1307 v1308 v1309 v1310 v1311 v1312 v1313 v1314 
##   266   158   122    16    54    77   104    84    57    75    65   176 
## v1315 v1316 v1317 v1318 v1319 v1320 v1321 v1322 v1323 v1324 v1325 v1326 
##   260   117   423    27    28   194    19    85   166    32   302    69 
## v1327 v1328 v1329 v1330 v1331 v1332 v1333 v1334 v1335 v1336 v1337 v1338 
##    36   714    13    20    31    48    16    15   175    19    47    12 
## v1339 v1340 v1341 v1342 v1343 v1344 v1345 v1346 v1347 v1348 v1349 v1350 
##    38   100    37    36     7    26   133   281    42    48    28   187 
## v1351 v1352 v1353 v1354 v1355 v1356 v1357 v1358 v1359 v1360 v1361 v1362 
##    19    85   544    26    31    40   181   314    92    58   249    33 
## v1363 v1364 v1365 v1366 v1367 v1368 v1369 v1370 v1371 v1372 v1373 v1374 
##    48    48    23    24    41   132    22   166   294    72    14    65 
## v1375 v1376 v1377 v1378 v1379 v1380 v1381 v1382 v1383 v1384 v1385 v1386 
##   286    97    56    36    48   153    17    16    37    17    80    62 
## v1387 v1388 v1389 v1390 v1391 v1392 v1393 v1394 v1395 v1396 v1397 v1398 
##    88     6    15    28    27    14    81     7    97   110    13    81 
## v1399 v1400 v1401 v1402 v1403 v1404 v1405 v1406 v1407 v1408 v1409 v1410 
##    43    51   230    11   220     7    16    26    59    13    17    18 
## v1411 v1412 v1413 v1414 v1415 v1416 v1417 v1418 v1419 v1420 v1421 v1422 
##    61   332    70   103    39   140    14    17    19    25    10    22 
## v1423 v1424 v1425 v1426 v1427 v1428 v1429 v1430 v1431 v1432 v1433 v1434 
##   243    12     6    92    12    13    17    14     7    41    23     9 
## v1435 v1436 v1437 v1438 v1439 v1440 v1441 v1442 v1443 v1444 v1445 v1446 
##    49    54   800    23    24    71   241    64    79   276    50   156 
## v1447 v1448 v1449 v1450 v1451 v1452 v1453 v1454 v1455 v1456 v1457 v1458 
##   115    18    24   174   405   208    31   406    14   132    49    44 
## v1459 v1460 v1461 v1462 v1463 v1464 v1465 v1466 v1467 v1468 v1469 v1470 
##    23    11    10    43    33    47    33    69   120    92    39    82 
## v1471 v1472 v1473 v1474 v1475 v1476 v1477 v1478 v1479 v1480 v1481 v1482 
##    32    78   191    10    46     7   140    51    26    81    63    28 
## v1483 v1485 v1486 v1487 v1488 v1489 v1490 v1491 v1492 v1493 v1494 v1495 
##    14    17    19    31    33    55    98    14    49    17     8    63 
## v1496 v1497 v1498 v1499 v1500 v1501 v1502 v1503 v1504 v1505 v1506 v1507 
##     8    17    33    23    25    13     4    35    35    11    46    35 
## v1508 v1509 v1510 v1511 v1512 v1513 v1514 v1515 v1516 v1517 v1518 v1519 
##    28    19    31    40    18    29    65    11    90    36    29     2 
## v1520 v1521 v1522 v1523 v1524 v1525 v1526 v1527 v1528 v1529 v1530 v1531 
##    13    61    63    17    14    39    38     6    14    10     7    35 
## v1532 v1533 v1534 v1535 v1536 v1537 v1538 v1539 v1540 v1541 v1542 v1543 
##    30    68     5    18    43    35    51    21    25    69    24    51 
## v1544 v1545 v1546 v1547 v1548 v1549 v1550 v1551 v1552 v1553 v1554 v1555 
##     5   185     1    35    97    42    29    36    65    61    38    22 
## v1556 v1557 v1558 v1559 v1560 v1561 v1562 v1563 v1564 v1565 v1566 v1567 
##    18    22    80    79    63    11    63     7    20    12     6     4 
## v1568 v1569 v1570 v1571 v1572 v1573 v1574 v1575 v1576 v1577 v1578 v1579 
##   156    38    19    26    38    13    18     5    21    28    17    22 
## v1580 v1581 v1582 v1583 v1584 v1585 v1586 v1587 v1588 v1589 v1590 v1591 
##    14    82    20    48     2   115    48    17    28    23    13    24 
## v1592 v1593 v1594 v1595 v1596 v1597 v1598 v1599 v1600 v1601 v1602 v1603 
##    19    14     6     8    76    58    21    15    11     9    33     9 
## v1604 v1605 v1606 v1607 v1608 v1609 v1610 v1611 v1612 v1613 v1614 v1615 
##     7     8     8    20     8    67    16    39    38     3     9    59 
## v1616 v1617 v1618 v1619 v1620 v1621 v1622 v1623 v1624 v1625 v1626 v1627 
##    73    37    20    28    19     4    24   123    36    44     7     7 
## v1628 v1629 v1630 v1631 v1632 v1633 v1634 v1635 v1636 v1637 v1638 v1639 
##    46    39    17    19    12    14     1    30    18    13     9    64 
## v1640 v1641 v1642 v1643 v1644 v1645 v1646 v1647 v1648 v1649 v1650 v1651 
##    12    14     9     8    12    20    36    18    42    84    92     1 
## v1652 v1653 v1654 v1655 v1656 v1657 v1658 v1659 v1660 v1661 v1662 v1663 
##    44    43    11    11    19    19    40    82   205    28    10    36 
## v1664 v1665 v1666 v1667 v1668 v1669 v1670 v1671 v1672 v1673 v1674 v1675 
##   144    33   601    75    28   460    86    16    85   224    69  1544 
## v1676 v1677 v1678 v1679 v1680 v1681 v1682 v1683 v1684 v1685 v1686 v1687 
##   515   226  1490  3016    86   181    60   386   132    33     4   124 
## v1688 v1689 v1690 v1691 v1692 v1693 v1694 v1695 v1696 v1697 v1698 v1699 
##    46    19   146    39   102    91   148    65   113   206   204    57 
## v1700 v1701 v1702 v1703 v1704 v1705 v1706 v1707 v1708 v1709 v1710 v1711 
##    24   102   582   159   316    57   114     7    55   128    19   181 
## v1712 v1713 v1714 v1715 v1716 v1717 v1718 v1719 v1720 v1721 v1722 v1723 
##   496    12    32   322    94    75   227   317   460    89   323   142 
## v1724 v1725 v1726 v1727 v1728 v1729 v1730 v1731 v1732 v1733 v1734 v1735 
##   155     4   105   228    87    32    75   152    72    75   307    12 
## v1736 v1737 v1738 v1739 v1740 v1741 v1743 v1744 v1746 v1747 v1748 v1749 
##    76   476    89    88    37     7   121    83    34    15    41    22 
## v1750 v1751 v1752 v1753 v1754 v1755 v1756 v1757 v1758 v1759 v1760 v1761 
##    18    27    35    26    23    15     1    15    38    18    11    11 
## v1762 v1763 v1764 v1765 v1766 v1767 v1768 v1769 v1770 v1771 v1772 v1773 
##    19     5    11     1    23    23     3    15    20   110    12    24 
## v1774 v1775 v1776 v1777 v1778 v1779 v1780 v1781 v1782 v1783 v1784 v1785 
##    35    12     7     5    13    30     9    96    29    49    58    29 
## v1786 v1787 v1788 v1789 v1790 v1791 v1792 v1793 v1794 v1795 v1796 v1797 
##     5    12    40   488    12    20    11    14    18    23    54    46 
## v1798 v1799 v1800 v1801 v1802 v1803 v1804 v1805 v1806 v1807 v1808 v1809 
##    30    31     2    11     8   273    15     3    19     9    39    21 
## v1810 v1811 v1812 v1813 v1814 v1815 v1816 v1817 v1818 v1819 v1820 v1821 
##    19   106    21    57    30    61    44    15    11    96     9     7 
## v1822 v1823 v1824 v1825 v1826 v1827 v1828 v1829 v1830 v1831 v1832 v1833 
##     8    21     5     8    19    14     5    10     7     5     6    10 
## v1834 v1835 v1836 v1837 v1838 v1839 v1840 v1841 v1842 v1843 v1844 v1845 
##     8     8     1     3    84     4     1     8     5     6     8     6 
## v1846 v1847 v1848 v1849 v1850 v1851 v1852 v1853 v1854 v1855 v1856 v1857 
##     5     6     4     6    16     4   413    21    15     8    23     7 
## v1858 v1859 v1860 v1861 v1862 v1863 v1864 v1865 v1866 v1867 v1868 v1869 
##     6    38     7   151    20    53     4    29    14    66    60    38 
## v1870 v1871 v1872 v1873 v1874 v1875 v1876 v1877 v1878 v1879 v1880 v1881 
##    19    19    29     3    25    86   100    16    40    11    19     6 
## v1882 v1883 v1884 v1885 v1886 v1887 v1888 v1889 v1890 v1891 v1892 v1893 
##     8     8    27    17    21    33    11     5    12     5     8     8 
## v1894 v1895 v1896 v1897 v1898 v1899 v1900 v1901 v1902 v1903 v1904 v1905 
##    14     9    14    27    22    58    76    12    14    38    29    22 
## v1906 v1907 v1908 v1909 v1910 v1911 v1912 v1913 v1914 v1915 v1916 v1917 
##    16   112   148  1269   202    65    30    40    24     4     7     8 
## v1918 v1919 v1920 v1921 v1922 v1923 v1924 v1925 v1926 v1927 v1928 v1929 
##    22    34    53    13    33    11     8    71    48   134    10    87 
## v1930 v1931 v1932 v1933 v1934 v1935 v1936 v1937 v1938 v1939 v1940 v1941 
##    97    10    16    66    27   139    34   176    29    64   162    25 
## v1942 v1943 v1944 v1945 v1946 v1947 v1948 v1949 v1950 v1951 v1952 v1953 
##    64    26   314   118    30    52     8    33  1032    17    57    34 
## v1954 v1955 v1956 v1957 v1958 v1959 v1960 v1961 v1962 v1963 v1964 v1965 
##     8   130    27    52    24    56    15    23    36    44    28    35 
## v1966 v1967 v1968 v1969 v1970 v1971 v1972 v1973 v1974 v1975 v1976 v1977 
##    35    31     2    36    11  1156    24    23   219    76    26  1036 
## v1978 v1979 v1980 v1981 v1982 v1983 v1984 v1985 v1986 v1987 v1988 v1989 
##    58    78    55   375    27    39   131   281    58    85    92   168 
## v1990 v1991 v1992 v1993 v1994 v1995 v1996 v1997 v1998 v1999 v2000 v2001 
##    49    91    41    62   125   135    19    14     8    26    13    14 
## v2002 v2003 v2004 v2005 v2006 v2007 v2008 v2009 v2010 v2011 v2012 v2013 
##   711    25   317     7    93    87    61    10    44    22    25    92 
## v2014 v2015 v2016 v2017 v2018 v2019 v2020 v2021 v2022 v2023 v2024 v2025 
##    79    24    22    97    42    79   342    12    11    46   264    94 
## v2026 v2027 v2028 v2029 v2030 v2031 v2032 v2033 v2034 v2035 v2036 v2037 
##    80    13     7   174    71   122   192    50    39    10     5    90 
## v2038 v2039 v2040 v2041 v2042 v2043 v2044 v2045 v2046 v2047 v2048 v2049 
##    15    14    91   118   142   158    34   392    30    78    40    25 
## v2050 v2051 v2052 v2053 v2054 v2055 v2056 v2057 v2058 v2059 v2060 v2061 
##   331    53    93    40    24    23     8    22    61    44    18    12 
## v2062 v2063 v2064 v2065 v2066 v2067 v2068 v2069 v2070 v2071 v2072 v2073 
##    58    28    12   132    37    15    27    93    12    21     7    70 
## v2074 v2075 v2076 v2077 v2078 v2079 v2080 v2081 v2082 v2083 v2084 v2085 
##   105   107    56    95   251    86    22   157   190    14    20    44 
## v2086 v2087 v2088 v2089 v2090 v2091 v2092 v2093 v2094 v2095 v2096 v2097 
##    51    58    52   148    41    19    32   139    18   217    77     6 
## v2098 v2099 v2100 v2101 v2102 v2103 v2104 v2105 v2106 v2107 v2108 v2109 
##     9     8    14    34    31    94    44     9    81     3    58    23 
## v2110 v2111 v2112 v2113 v2114 v2115 v2116 v2117 v2118 v2119 v2120 v2121 
##    24    12    77     7    35   209    15     5    56    17    59    52 
## v2122 v2123 v2124 v2125 v2126 v2127 v2128 v2129 v2130 v2131 v2132 v2133 
##    68    27    68    27    65    18    65     6    56    11    15    43 
## v2134 v2135 v2136 v2137 v2138 v2139 v2140 v2141 v2142 v2143 v2144 v2145 
##    16    12     7     6    19     6     7     5     7    12     8     8 
## v2146 v2147 v2148 v2149 v2150 v2151 v2152 v2153 v2154 v2155 v2156 v2157 
##    36    58     5    17     3    32    19    51    83    27    12    26 
## v2158 v2159 v2160 v2161 v2162 v2163 v2164 v2165 v2166 v2167 v2168 v2169 
##    56    22   116   137    17    20    16    18    34    25    10   107 
## v2170 v2171 v2172 v2173 v2174 v2175 v2176 v2177 v2178 v2179 v2180 v2181 
##    50    19    13    22    16    13    45    18    23    27    59    31 
## v2182 v2183 v2184 v2185 v2186 v2187 v2188 v2189 v2190 v2191 v2192 v2193 
##   117   335     7    24    15    10     8     9    22    30    19     9 
## v2194 v2195 v2196 v2197 v2198 v2199 v2200 v2201 v2202 v2203 v2204 v2205 
##    18    13    10    15     4     8     5    15     6    30     2     7 
## v2206 v2207 v2208 v2209 v2210 v2211 v2212 v2213 v2214 v2215 v2216 v2217 
##   129    12     8     3    22    15   127    60   161    44    26    17 
## v2218 v2219 v2220 v2221 v2222 v2223 v2224 v2225 v2226 v2227 v2228 v2229 
##    42    65     9    43   611    70    48    23    42   135    84    32 
## v2230 v2231 v2232 v2233 v2234 v2235 v2236 v2237 v2238 v2239 v2240 v2241 
##   314    28   717   125     6    90   220   132   100    30   207   104 
## v2242 v2243 v2244 v2245 v2246 v2247 v2248 v2249 v2250 v2251 v2252 v2253 
##    24   113    80    59   158    32   216    16    48    15   125    32 
## v2254 v2255 v2256 v2257 v2258 v2259 v2260 v2261 v2262 v2263 v2264 v2265 
##    49   195   169    75    23    75    75     6    56   122    18   121 
## v2266 v2267 v2268 v2269 v2270 v2271 v2272 v2273 v2274 v2275 v2276 v2277 
##     2    41    28   170    94    51    48    88    43   117    24    79 
## v2278 v2279 v2280 v2281 v2282 v2283 v2284 v2285 v2286 v2287 v2288 v2289 
##    33    78     4    59    19   201   198   367   334    21    33    44 
## v2290 v2291 v2292 v2293 v2294 v2295 v2296 v2297 v2298 v2299 v2300 v2301 
##   126    58   314    12   148   106    38    11    15    79    53    67 
## v2302 v2303 v2304 v2305 v2306 v2307 v2308 v2309 v2310 v2311 v2312 v2313 
##    11    35    14    22   169    18    35    28    17    20    44    86 
## v2314 v2315 v2316 v2317 v2318 v2319 v2320 v2321 v2322 v2323 v2324 v2325 
##    93    43    11    74    60     6    15    12    14     3     9    26 
## v2326 v2327 v2328 v2329 v2330 v2331 v2332 v2333 v2334 v2335 v2336 v2337 
##    76    18    21    49   225     3    66     8    18    18    16    41 
## v2338 v2339 v2340 v2341 v2342 v2343 v2344 v2345 v2346 v2347 v2348 v2349 
##    10    35     7    42    58    79   143    55    41    60    13    35 
## v2350 v2351 v2352 v2353 v2354 v2355 v2356 v2357 v2358 v2359 v2360 v2361 
##    24    22    16    25   116    78    76     8     2    25     9    21 
## v2362 v2363 v2364 v2365 v2366 v2367 v2368 v2370 v2371 v2372 v2373 v2374 
##    21     1     6    33     6    65    17    13   196    27   102     8 
## v2375 v2376 v2377 v2378 v2379 v2380 v2381 v2382 v2383 v2384 v2385 v2386 
##    49    45    35    22    26    25    15    12     8    51    29     9 
## v2387 v2388 v2389 v2390 v2391 v2392 v2393 v2394 v2395 v2396 v2397 v2398 
##     4    17    16     7    31    46    20    11    53    43     1    11 
## v2399 v2400 v2401 v2402 v2403 v2404 v2405 v2406 v2407 v2408 v2409 v2410 
##     8    24     5    21    38    38    19     7    29    35    42    24 
## v2411 v2412 v2413 v2414 v2415 v2416 v2417 v2418 v2419 v2420 v2421 v2422 
##    10   104     7    23     7    17     9    31    54    10    10    88 
## v2423 v2424 v2425 v2426 v2427 v2428 v2429 v2430 v2431 v2432 v2433 v2434 
##    37    26   101    19    33     7     7     4     9    40    18     7 
## v2436 v2437 v2438 v2439 v2440 v2441 v2442 v2443 v2444 v2445 v2446 v2447 
##    20     6    43    60     8   290    13    17    22   115    15    26 
## v2448 v2449 v2450 v2451 v2452 v2453 v2454 v2455 v2456 v2457 v2458 v2459 
##    33    34    52     5    25   112    33    35   256     9     4    99 
## v2460 v2461 v2462 v2463 v2464 v2465 v2466 v2467 v2468 v2469 v2470 v2471 
##    21    23     8    43    36    32    35    71    45     1    40    18 
## v2472 v2473 v2474 v2475 v2476 v2477 v2478 v2479 v2480 v2481 v2482 v2483 
##   251    37    21    25    35     4    25    18    20    52    43    22 
## v2484 v2485 v2486 v2487 v2488 v2489 v2490 v2491 v2492 v2493 v2494 v2495 
##    54    99    41    91    22    44    62    36    21     2    46    29 
## v2496 v2497 v2498 v2499 v2500 v2501 v2502 v2503 v2504 v2505 v2506 v2507 
##    29    19    51    72    13     5    22    30     1     8     6     8 
## v2508 v2509 v2510 v2511 v2512 v2513 v2514 v2515 v2516 v2517 v2518 v2519 
##    42    46    14    13    10    91     3     8     6     7     3    53 
## v2520 v2521 v2522 v2523 v2524 v2525 v2526 v2527 v2528 v2529 v2530 v2531 
##     6    17     4    13    18    15     8     8     9    14    59    20 
## v2532 v2533 v2534 v2535 v2536 v2537 v2538 v2539 v2540 v2541 v2542 v2543 
##    15    11    20     7    26    11    17    59   152   153    34    18 
## v2544 v2545 v2546 v2547 v2548 v2549 v2550 v2551 v2552 v2553 v2554 v2555 
##    14    68    23    23    79    66    39    69    53    20    44    15 
## v2556 v2557 v2558 v2559 v2560 v2561 v2562 v2563 v2564 v2565 v2566 v2567 
##    45    20    18    49    15    46    62    38     7    13    10     9 
## v2568 v2569 v2570 v2571 v2572 v2573 v2574 v2575 v2576 v2577 v2578 v2579 
##    36    12    32    24    38    94   146    90    39   106    50    15 
## v2580 v2581 v2582 v2583 v2584 v2585 v2586 v2587 v2588 v2589 v2590 v2591 
##    18    19    38    18    16    10    22    22    24    12    15    16 
## v2592 v2593 v2594 v2595 v2596 v2597 v2598 v2599 v2600 v2601 v2602 v2603 
##    27    38    16    26    17     7     2     8    13    14    41    11 
## v2604 v2605 v2606 v2607 v2608 v2609 v2610 v2611 v2612 v2613 v2614 v2615 
##    45     5   140    30    59     6     4    15    29     8    44     7 
## v2616 v2617 v2618 v2619 v2620 v2621 v2622 v2623 v2624 v2625 v2626 v2627 
##    40    22    13    29    15     9    12    34    27    19    27    19 
## v2628 v2629 v2630 v2631 v2632 v2633 v2634 v2635 v2636 v2637 v2638 v2639 
##    24    39    34   121    10    26    20     5   929    21    14    85 
## v2640 v2641 v2642 v2643 v2644 v2645 v2646 v2647 v2648 v2649 v2650 v2651 
##    58    52    79   119    30    80    26    35   198    91    10     3 
## v2652 v2653 v2654 v2655 v2656 v2657 v2658 v2659 v2660 v2661 v2662 v2663 
##    10    12   235     6    23    70    72   227   170    37    12     4 
## v2664 v2665 v2666 v2667 v2668 v2669 v2670 v2671 v2672 v2673 v2674 v2675 
##    70   181    72    70    70    29   120    56    34    10   110   102 
## v2676 v2677 v2678 v2679 v2680 v2681 v2682 v2683 v2684 v2685 v2686 v2687 
##    80    47     3    35    67    16    73    43    46   132    10    20 
## v2688 v2689 v2690 v2691 v2692 v2693 v2694 v2695 v2696 v2697 v2698 v2699 
##    40    59    44    20    12    35   127    22    14    33    40    43 
## v2700 v2701 v2702 v2703 v2704 v2705 v2706 v2707 v2708 v2709 v2710 v2711 
##    16    61    69    52     6    11    57    40    46    10     3     2 
## v2712 v2713 v2714 v2715 v2716 v2717 v2718 v2719 v2720 v2721 v2722 v2723 
##    33    11     2    28    10    32     2   190     3     8    37    20 
## v2724 v2725 v2726 v2727 v2728 v2729 v2730 v2731 v2732 v2733 v2734 v2735 
##    38    13    81   103    28     5     8    10    19    19     9    27 
## v2736 v2737 v2738 v2739 v2740 v2741 v2742 v2743 v2744 v2745 v2746 v2747 
##     2    10     3    24     8    23    24    12    17     3    25     8 
## v2748 v2749 v2750 v2751 v2752 v2753 v2754 v2755 v2756 v2757 v2758 v2759 
##    29    57    32    34    23    29    18     2     6    62    14    13 
## v2760 v2761 v2762 v2763 v2764 v2765 v2766 v2767 v2768 v2769 v2770 v2771 
##    13    17    68     6    23    12     6    21     7     9     1    21 
## v2772 v2773 v2774 v2775 v2776 v2777 v2778 v2779 v2780 v2781 v2782 v2783 
##     9     4     8     5    75    30    20    29    16    16    15    12 
## v2784 v2785 v2786 v2787 v2788 v2789 v2790 v2791 v2792 v2793 v2794 v2795 
##    37     8    30    44     5    16    18    15    37   120    23    75 
## v2796 v2797 v2798 v2799 v2800 v2801 v2802 v2803 v2804 v2805 v2806 v2807 
##   337    93   106    19    10    69   600    16    69    17   292    28 
## v2808 v2809 v2810 v2811 v2812 v2813 v2814 v2815 v2816 v2817 v2818 v2819 
##     7    22   183   359    24    13    11    12     8    17    17    58 
## v2820 v2821 v2822 v2823 v2824 v2825 v2826 v2827 v2828 v2829 v2830 v2831 
##    55    32     7    16    16    23    14    32    20    49    19    30 
## v2832 v2833 v2834 v2835 v2836 v2837 v2838 v2839 v2840 v2841 v2842 v2843 
##     3    10    42    17    26    30    17    46    31    37    59    16 
## v2844 v2845 v2846 v2847 v2848 v2849 v2850 v2851 v2852 v2853 v2854 v2855 
##    13    38    28    16    16    28    31    20    19    27    12    21 
## v2856 v2857 v2858 v2859 v2860 v2861 v2862 v2863 v2864 v2865 v2866 v2867 
##    41    15    69     2     7    51    32   114     6    29   398    18 
## v2868 v2869 v2870 v2871 v2872 v2873 v2874 v2875 v2876 v2877 v2878 v2879 
##    62    10    37     6    13    14    47   128    15     3    36    14 
## v2880 v2881 v2882 v2883 v2884 v2885 v2886 v2887 v2888 v2889 v2890 v2891 
##    14     1   248    12    35    60    22     5    74    24    10     6 
## v2892 v2893 v2894 v2895 v2896 v2897 v2898 v2899 v2900 v2901 v2902 v2903 
##    11   133    80    45   102    11    56    13    78   289   197    11 
## v2904 v2905 v2906 v2907 v2908 v2909 v2910 v2911 v2912 v2913 v2914 v2915 
##    27    30    78    61    22     5    16    67    55    61    22    12 
## v2916 v2917 v2918 v2919 v2920 v2921 v2922 v2923 v2924 v2925 v2926 v2927 
##    66    16    24     1     7     7    55    10    68    18     8    39 
## v2928 v2929 v2930 v2931 v2932 v2933 v2934 v2935 v2936 v2937 v2938 v2939 
##     7    14    45    18    31    41    22    15    15    27     3    20 
## v2940 v2941 v2942 v2943 v2944 v2945 v2946 v2947 v2948 v2949 v2950 v2951 
##    12    51    18    24    66     7     2    11     5     1    21     8 
## v2952 v2953 v2954 v2955 v2956 v2957 v2958 v2959 v2960 v2961 v2962 v2963 
##     5    67    59    41    16   104    29    29    20    37    15    19 
## v2964 v2965 v2966 v2967 v2968 v2969 v2970 v2971 v2972 v2973 v2974 v2975 
##     1     7    17    12    47     7     7   105    10     9     5    21 
## v2976 v2977 v2978 v2979 v2980 v2981 v2982 v2983 v2984 v2985 v2986 v2988 
##    12    46    16    39    12    13     7     8    10    21     4    72 
## v2989 v2990 v2991 v2992 v2993 v2994 v2995 v2996 v2997 v2998 v2999 v3000 
##   171    34    77    72   199    44    48   147   250   113   111   119 
## v3001 v3002 v3003 v3004 v3005 v3006 v3007 v3008 v3009 v3010 v3011 v3012 
##    21    97    25   338     9     6    38     6   171   112    31   149 
## v3013 v3014 v3015 v3016 v3017 v3018 v3019 v3020 v3021 v3022 v3023 v3024 
##   113    34    43    69    47    40   133    26    35    16    26    39 
## v3025 v3026 v3027 v3028 v3029 v3030 v3031 v3032 v3033 v3034 v3035 v3036 
##    25   137    23    41    68    12    15   111    48    76     6    66 
## v3037 v3038 v3039 v3040 v3041 v3042 v3043 v3044 v3045 v3046 v3047 v3048 
##    32    70    22    20    27   130    32    23     8    28   198    92 
## v3049 v3050 v3051 v3052 v3053 v3054 v3055 v3056 v3057 v3058 v3059 v3060 
##   154     8    22    56    22    28    25     9    15    34    84    60 
## v3061 v3062 v3063 v3064 v3065 v3066 v3067 v3068 v3069 v3070 v3071 v3072 
##    29    31    37   101    12     9    12    32    14   320    12     5 
## v3073 v3074 v3075 v3076 v3077 v3078 v3079 v3080 v3081 v3082 v3083 v3084 
##     8    27    50    22   227    85   172    70     8   168     9    92 
## v3085 v3086 v3087 v3088 v3089 v3090 v3091 v3092 v3093 v3094 v3095 v3096 
##    11    37    23   107     9    57    87    48    50    12    26    25 
## v3097 v3098 v3099 v3100 v3101 v3102 v3103 v3104 v3105 v3106 v3107 v3108 
##    23    12    71    72    25    13     4    51    59   181     9    44 
## v3109 v3110 v3111 v3112 v3113 v3114 v3115 v3116 v3117 v3118 v3119 v3120 
##     5    65    12    11    54     7    45    89    70    21    13    11 
## v3121 v3122 v3123 v3124 v3125 v3126 v3127 v3128 v3129 v3130 v3131 v3132 
##     7   156    47    28    13    51    26   125   122    35    93     5 
## v3133 v3134 v3135 v3136 v3137 v3138 v3139 v3140 v3141 v3142 v3143 v3144 
##    67    31   213    50    57    18    26   111     3   121    62    25 
## v3145 v3146 v3147 v3148 v3149 v3150 v3151 v3152 v3153 v3154 v3155 v3156 
##   103    14     1    18   128    17    17    11    97    10    35   113 
## v3157 v3158 v3159 v3160 v3161 v3162 v3163 v3164 v3165 v3166 v3167 v3168 
##    17   112    92    13    60    30    17     7    17    22     5    90 
## v3169 v3170 v3171 v3172 v3173 v3174 v3175 v3176 v3177 v3178 v3179 v3180 
##     6    50    20    48    47    11   156     9    26    42    39    14 
## v3181 v3182 v3183 v3184 v3185 v3186 v3187 v3188 v3189 v3190 v3191 v3192 
##     7     2    23    16     6    53    15    15    50    36    16    70 
## v3193 v3194 v3195 v3196 v3197 v3198 v3199 v3200 v3201 v3202 v3203 v3204 
##    26     1    10    49    15     7    16    36    76     8    59    15 
## v3205 v3206 v3207 v3208 v3209 v3210 v3211 v3212 v3213 v3214 v3215 v3216 
##    36    15     9    35     9    18    18     8    18    35    14    33 
## v3217 v3218 v3219 v3220 v3221 v3222 v3224 v3225 v3226 v3227 v3228 v3229 
##    11    14    10    47    19    85    32    13    10    32    28    54 
## v3230 v3231 v3232 v3233 v3234 v3235 v3236 v3237 v3238 v3239 v3240 v3241 
##     7    22    25    18    13     4     7    52    11    29   134    88 
## v3242 v3243 v3244 v3245 v3246 v3247 v3248 v3249 v3250 v3251 v3252 v3253 
##    41   135     7    13     9    11     8    40    21    30    32    67 
## v3254 v3255 v3256 v3257 v3258 v3259 v3260 v3261 v3262 v3263 v3264 v3265 
##   192   205    39    22    22    10    25    57   100    26    97   126 
## v3266 v3267 v3268 v3269 v3270 v3271 v3272 v3273 v3274 v3275 v3276 v3277 
##    16    25     6    17   170    24    13    19    58    30    55    22 
## v3278 v3279 v3280 v3281 v3282 v3283 v3284 v3285 v3286 v3287 v3288 v3289 
##    22    16    14    13    31    16    17    45    19    34    10    15 
## v3290 v3291 v3292 v3293 v3294 v3295 v3296 v3297 v3298 v3299 v3300 v3301 
##     1    10     2     8    20    11    15    85    35    31    19    38 
## v3302 v3303 v3304 v3305 v3306 v3307 v3308 v3309 v3310 v3311 v3312 v3313 
##     7   356    43   117    33    18    24    15    27   248    13    25 
## v3314 v3315 v3316 v3317 v3318 v3319 v3320 v3321 v3322 v3323 v3324 v3325 
##   207   133    48   123    72    27     5    24    33    65   155    12 
## v3326 v3327 v3328 v3329 v3330 v3331 v3332 v3333 v3334 v3335 v3336 v3337 
##    69    10    28   126    19    53    29    15    36    64    12    43 
## v3338 v3339 v3340 v3341 v3342 v3343 v3344 v3345 v3346 v3347 v3348 v3349 
##    16     8    14    44    53    70    84    80   470    29    18   155 
## v3350 v3351 v3352 v3353 v3354 v3355 v3356 v3357 v3358 v3359 v3360 v3361 
##   182    24    40    44    11     1    29    36    41   117    17    35 
## v3362 v3363 v3364 v3365 v3366 v3367 v3368 v3369 v3370 v3371 v3372 v3373 
##    75    22    40   207    17    94    27    29    43    26    26    17 
## v3374 v3375 v3376 v3377 v3378 v3379 v3380 v3381 v3382 v3383 v3384 v3385 
##    53    42    16    38    12     5    17    70    16     8    66   102 
## v3386 v3387 v3388 v3389 v3390 v3391 v3392 v3393 v3394 v3395 v3396 v3397 
##     3    23    22    12     6    13    24    14     8     6    92    34 
## v3398 v3399 v3400 v3401 v3402 v3403 v3404 v3405 v3406 v3408 v3409 v3410 
##    18    35    20    21    18    87    29     2    98    11    59    47 
## v3411 v3412 v3413 v3414 v3415 v3416 v3417 v3418 v3419 v3420 v3421 v3422 
##     6    47     7     9    30    34    31    17    26     7     6     1 
## v3423 v3424 v3425 v3426 v3427 v3428 v3429 v3430 v3431 v3432 v3433 v3434 
##    94    66    50    55     2     8    38     7    22    52     8    13 
## v3435 v3436 v3437 v3438 v3439 v3440 v3441 v3442 v3443 v3444 v3445 v3446 
##    98    10    14    41    14     9     1    19    45    24    20    12 
## v3447 v3448 v3449 v3450 v3451 v3452 v3453 v3454 v3455 v3456 v3457 v3458 
##    15     9    17    30    43    11    13    21    99    24     7    11 
## v3459 v3460 v3461 v3462 v3463 v3464 v3465 v3466 v3467 v3468 v3469 v3470 
##    41    31     2     9    12    22    11    19    25    54    66    46 
## v3471 v3472 v3473 v3474 v3475 v3476 v3477 v3478 v3479 v3480 v3481 v3482 
##    47    40    37     4    17    77    41    28    16    47    17    20 
## v3483 v3484 v3485 v3486 v3487 v3488 v3489 v3490 v3491 v3492 v3493 v3494 
##    16     3    11    19    48    43    17    28    19    20    28    38 
## v3495 v3496 v3497 v3498 v3499 v3500 v3501 v3502 v3503 v3504 v3505 v3506 
##    11    46    26    24    12     5    18    11    10    12    22    22 
## v3507 v3508 v3509 v3510 v3511 v3512 v3513 v3514 v3515 v3516 v3517 v3518 
##     9    11    56    26    89     8    21    16    46    40    18    88 
## v3519 v3520 v3521 v3522 v3523 v3524 v3525 v3526 v3527 v3528 v3529 v3530 
##    11    37     4    28    42     1     6     8     7    14    39    31 
## v3531 v3532 v3533 v3534 v3535 v3536 v3537 v3538 v3539 v3540 v3541 v3542 
##    11    31    29    29     8    22     7    33    10    25    11    11 
## v3543 v3544 v3545 v3546 v3547 v3548 v3549 v3550 v3551 v3552 v3553 v3554 
##    14    56    16     5    25    14    66    31     7    28    25    67 
## v3555 v3556 v3557 v3558 v3559 v3560 v3561 v3562 v3563 v3564 v3565 v3566 
##    18    28    21    16    14     4    18    42    11    30    72    51 
## v3567 v3568 v3569 v3570 v3571 v3572 v3573 v3574 v3575 v3576 v3577 v3578 
##     7    51    15    49    28    13    29    12     8    57   182    12 
## v3579 v3580 v3581 v3582 v3583 v3584 v3585 v3586 v3587 v3588 v3589 v3590 
##    12    21    25    29    28    37    16    24    35    64    10    27 
## v3591 v3592 v3593 v3594 v3595 v3596 v3597 v3598 v3599 v3600 v3601 v3602 
##    33    10    32    47    30    21    30    39    30    37    45    82 
## v3603 v3604 v3605 v3606 v3607 v3609 v3610 v3611 v3612 v3613 v3614 v3615 
##    17    22    19    17     8    82    47    71     1    42    52    84 
## v3616 v3617 v3618 v3619 v3620 v3621 v3622 v3623 v3624 v3625 v3626 v3627 
##    31    13    13    33    67   105    20    28    17     9    35    21 
## v3628 v3629 v3630 v3631 v3632 v3633 v3634 v3635 v3636 v3637 v3638 v3639 
##    44    32    37    53    10    42    67    56    46     3   174    31 
## v3640 v3641 v3642 v3643 v3644 v3645 v3646 v3647 v3648 v3649 v3650 v3651 
##    29   104    23    71    18    25    19    45    36    56    29    36 
## v3652 v3653 v3654 v3655 v3656 v3657 v3658 v3659 v3660 v3661 v3662 v3663 
##    37    35   103    91    87    39    15    41    15    78    50     4 
## v3664 v3665 v3666 v3667 v3668 v3669 v3670 v3671 v3672 v3673 v3674 v3675 
##   216    17    15     3    22    56    78    31    45    22    17     2 
## v3676 v3677 v3678 v3679 v3680 v3681 v3682 v3683 v3684 v3685 v3686 v3687 
##     7    32    72    47    14    68    48    11    18    38    18    24 
## v3689 v3690 v3691 v3692 v3693 v3694 v3695 v3696 v3697 v3698 v3699 v3700 
##     8    20    18    37    15    22    15    28    24    10    11     1 
## v3701 v3703 v3704 v3705 v3706 v3707 v3708 v3709 v3710 v3711 v3712 v3713 
##     7     3    36    10    32    13    15     9     8     9    65    26 
## v3714 v3715 v3716 v3717 v3718 v3719 v3720 v3721 v3722 v3723 v3724 v3725 
##     6     7     8     8     9    26     7    13     9    39    11    57 
## v3726 v3727 v3728 v3729 v3730 v3731 v3732 v3735 v3736 v3737 v3738 v3739 
##    15    33    36    61    20    21    32    54    18    15    15    12 
## v3740 v3741 v3742 v3743 v3744 v3745 v3746 v3747 v3748 v3749 v3750 v3751 
##     7    18     8     6    11    32    12    61    55    89    55     5 
## v3752 v3753 v3754 v3755 v3756 v3757 v3758 v3759 v3760 v3761 v3762 v3763 
##    53    12    30    10    50    27    71    11     7    20    50     8 
## v3764 v3765 v3766 v3767 v3768 v3769 v3770 v3771 v3772 v3773 v3774 v3775 
##     7    17    15    19    53    28    26    34    56    34    46    45 
## v3776 v3777 v3778 v3779 v3780 v3781 v3782 v3783 v3784 v3785 v3786 v3787 
##    37    47    22    27    18    55    84    30    70     7    24    17 
## v3788 v3789 v3790 v3791 v3792 v3793 v3794 v3795 v3796 v3797 v3798 v3799 
##     9     6    22     8    23     7    19     1    17    40     8     7 
## v3800 v3801 v3802 v3803 v3804 v3805 v3806 v3807 v3808 v3809 v3810 v3811 
##    79    12     7    10    15    36    33    39     7    22    19    20 
## v3812 v3813 v3814 v3815 v3816 v3817 v3818 v3819 v3820 v3821 v3822 v3823 
##    47    16    22    14    39    32    12     9    17     9     8    30 
## v3824 v3825 v3826 v3827 v3828 v3829 v3830 v3831 v3832 v3833 v3834 v3835 
##    24    34     4    42    54    27    12    47    48    16    11    23 
## v3836 v3837 v3838 v3839 v3840 v3841 v3842 v3843 v3844 v3845 v3846 v3847 
##    22     4     9    13     9    10    45    32   119     2    22    23 
## v3848 v3849 v3850 v3851 v3852 v3853 v3854 v3855 v3856 v3857 v3858 v3859 
##    28    24    34     6     5    26    31    11    33    12    10     2 
## v3860 v3861 v3862 v3863 v3864 v3865 v3866 v3867 v3868 v3869 v3870 v3871 
##    34    24    17     2    21     5    17     6   112     5    27    44 
## v3872 v3873 v3874 v3875 v3876 v3877 v3878 v3879 v3880 v3881 v3882 v3883 
##    29    46    41    43   679     5     1   355     6     4    49    11 
## v3884 v3885 v3886 v3887 v3888 v3889 v3890 v3891 v3892 v3893 v3894 v3895 
##    52     7     8    13    47     1    10    41    76    28   198     5 
## v3896 v3897 v3898 v3899 v3900 v3901 v3902 v3903 v3904 v3905 v3906 v3907 
##     5     4    22    40    11    89     8     3    44    28    12    52 
## v3908 v3909 v3910 v3911 v3912 v3913 v3914 v3915 v3916 v3917 v3918 v3919 
##    12    31     7    13    48     6   404     3    20    17     4     1 
## v3920 v3921 v3922 v3923 v3924 v3925 v3926 v3927 v3928 v3929 v3930 v3931 
##    19     7    41     6     9    18    30    20   105   108    15    18 
## v3932 v3933 v3934 v3935 v3936 v3937 v3938 v3939 v3940 v3941 v3942 v3943 
##    46     5     4    23     2     8    60   100    18    37   197    15 
## v3944 v3945 v3946 v3947 v3948 v3949 v3950 v3951 v3952 v3953 v3954 v3955 
##   105   138     8    20    50     7   129    23   210    17    12   236 
## v3956 v3957 v3958 v3959 v3960 v3961 v3962 v3963 v3964 v3965 v3966 v3967 
##    18     7    42    42    10    85   143     2    20    27   105   125 
## v3968 v3969 v3970 v3971 v3972 v3973 v3974 v3975 v3976 v3977 v3978 v3979 
##   136    35    26     2    41   138    22     5     7   139    73    22 
## v3980 v3981 v3982 v3983 v3984 v3985 v3986 v3987 v3988 v3989 v3990 v3991 
##    54    28    84    33   104    16    40    33    21    44    11    21 
## v3992 v3993 v3994 v3995 v3996 v3997 v3998 v3999 v4000 v4001 v4002 v4003 
##    18    55     8    13    25    26     7     9    13     6     9     1 
## v4004 v4005 v4006 v4007 v4008 v4009 v4010 v4011 v4012 v4013 v4014 v4015 
##   158    10    22   428    10    16   114   276    42     9    66    10 
## v4016 v4017 v4018 v4019 v4020 v4021 v4022 v4023 v4024 v4025 v4026 v4027 
##    30     3     3    34   173    40    43    39     3    18    60    19 
## v4028 v4029 v4030 v4031 v4032 v4033 v4034 v4035 v4036 v4037 v4038 v4039 
##    10    46    47    37    10    16     7   134    83    55    12     3 
## v4040 v4041 v4042 v4043 v4044 v4045 v4046 v4047 v4048 v4049 v4050 v4051 
##    21    33    86    23   187    13    30   113    11    15    68     3 
## v4052 v4053 v4054 v4055 v4056 v4057 v4058 v4059 v4060 v4061 v4062 v4063 
##    29     3     4     9    11    23     6     4    13     3    15   147 
## v4064 v4065 v4066 v4067 v4068 v4069 v4070 v4071 v4072 v4073 v4074 v4075 
##    25    12    12    10    11    88    18     5    19    37    41     4 
## v4076 v4077 v4078 v4079 v4080 v4081 v4082 v4083 v4084 v4085 v4086 v4087 
##    18    11     5     2     9     8     3     1    25    11   158   373 
## v4088 v4089 v4090 v4091 v4092 v4093 v4094 v4095 v4096 v4097 v4098 v4099 
##   669    22   459    17     5    98    79   150    92   280    23     5 
## v4100 v4101 v4102 v4103 v4104 v4105 v4106 v4107 v4108 v4109 v4110 v4112 
##     4     4    23    77    80    10    29     8     9     6    13     4 
## v4113 v4114 v4115 v4116 v4117 v4118 v4119 v4120 v4121 v4122 v4123 v4124 
##     6    22    11    13    49     1    16    17    11     3     7     6 
## v4125 v4126 v4127 v4128 v4129 v4130 v4131 v4132 v4133 v4134 v4135 v4136 
##    10     4     5     9     2     2     2     8     6     3     2     8 
## v4137 v4140 v4141 v4142 v4143 v4144 v4145 v4146 v4147 v4148 v4149 v4150 
##     3     9     2    11     4    10     5    31   125     4    65    15 
## v4151 v4152 v4153 v4154 v4155 v4156 v4157 v4158 v4159 v4160 v4161 v4162 
##     4     5    12    10     9     6    29     7    22    48    22     5 
## v4163 v4164 v4165 v4166 v4167 v4168 v4169 v4170 v4171 v4172 v4173 v4174 
##    41     6    30    10    33    69     7    36    14    49    16    44 
## v4175 v4176 v4177 v4178 v4179 v4180 v4181 v4182 v4183 v4184 v4185 v4186 
##    90    13    11     5    27     4    27     6    37    14     7    21 
## v4187 v4188 v4189 v4190 v4191 v4192 v4193 v4194 v4195 v4196 v4197 v4198 
##     7     5     8     6     6     6     6    25     8   453    44    13 
## v4199 v4200 v4201 v4202 v4203 v4204 v4205 v4206 v4207 v4208 v4209 v4210 
##    48     5     2     4    87    13    21    11    40    32    63     6 
## v4211 v4212 v4213 v4214 v4215 v4216 v4217 v4218 v4219 v4220 v4221 v4222 
##    38   110    18     2     2    20    65     6    10     6    21    44 
## v4223 v4224 v4225 v4226 v4227 v4228 v4229 v4230 v4231 v4232 v4233 v4234 
##    11    10     7    24     4     6    16     5     8     9     6     5 
## v4235 v4236 v4237 v4238 v4239 v4240 v4241 v4242 v4243 v4244 v4245 v4246 
##     6     9     6     7     6     8     4     3    20    51    30   102 
## v4247 v4248 v4249 v4250 v4251 v4252 v4253 v4254 v4255 v4256 v4257 v4258 
##   191     5     8    26     8     3    11    21    12     5     4    23 
## v4259 v4260 v4261 v4262 v4263 v4264 v4265 v4266 v4267 v4268 v4269 v4270 
##     1    15    11    11     8     7     7     4    13    28    47     2 
## v4271 v4272 v4273 v4274 v4275 v4276 v4277 v4278 v4279 v4280 v4281 v4282 
##    17     8    14    51    15     6    11    17    12    10    11    14 
## v4283 v4284 v4285 v4286 v4287 v4288 v4289 v4290 v4291 v4292 v4293 v4294 
##    13     8     7     3     5    20    11    20     5    12    44    54 
## v4295 v4296 v4297 v4298 v4299 v4300 v4301 v4302 v4303 v4304 v4305 v4306 
##    46    66    16    43     4    33    29     3    12    43    37    69 
## v4307 v4308 v4309 v4310 v4311 v4312 v4313 v4314 v4315 v4316 v4317 v4318 
##    72    72    55   158    30    55    27     6     4     8     9   112 
## v4319 v4320 v4321 v4322 v4323 v4324 v4325 v4326 v4327 v4328 v4329 v4330 
##    32    74    37    15    71    13    13    12     8     8    19    11 
## v4331 v4332 v4333 v4334 v4335 v4336 v4337 v4338 v4339 v4340 v4341 v4342 
##    15    13    11    10    22    12     1    43     5    25    11    11 
## v4343 v4344 v4345 v4346 v4347 v4348 v4349 v4350 v4351 v4352 v4353 v4354 
##     6    38     7    44    13    30    12    41     1    11    42     5 
## v4355 v4356 v4357 v4358 v4359 v4360 v4361 v4362 v4363 v4364 v4365 v4366 
##    25     5    16     2     4    12    15     7     9     3     1     8 
## v4367 v4368 v4369 v4370 v4371 v4372 v4373 v4374 v4375 v4376 v4377 v4378 
##     7    18    21     3    20     6    14     7     5    36     3    10 
## v4379 v4380 v4381 v4382 v4383 v4384 v4385 v4386 v4387 v4388 v4389 v4390 
##    18    21    15    21    40    62     3    31    17     5    10    13 
## v4391 v4392 v4393 v4394 v4395 v4396 v4397 v4398 v4399 v4400 v4401 v4402 
##    10     7   120    21    55    32     1   103    27     7    17    13 
## v4403 v4404 v4405 v4406 v4407 v4408 v4409 v4410 v4411 v4412 v4413 v4414 
##    22    39     3    93     5    64    10    10    42     7    65    35 
## v4415 v4416 v4417 v4418 v4419 v4420 v4421 v4422 v4423 v4424 v4425 v4426 
##    32    52    39     4     4     3    72     4     9     5    15     3 
## v4427 v4428 v4429 v4430 v4431 v4432 v4433 v4434 v4435 v4436 v4437 v4438 
##     2    17    93    21    12    34    16     8     5     6    10    24 
## v4439 v4440 v4441 v4442 v4443 v4444 v4445 v4446 v4447 v4448 v4449 v4450 
##     2    48     9    18    15    47    70     7    10   118     4    12 
## v4452 v4453 v4454 v4455 v4456 v4457 v4458 v4459 v4460 v4461 v4462 v4463 
##    11    51    11    14     4    34     9     9    10     7     3    12 
## v4464 v4465 v4466 v4467 v4468 v4469 v4470 v4471 v4472 v4473 v4474 v4475 
##    32    62    35     7    11     8    14     2     8     4    10     3 
## v4476 v4477 v4478 v4479 v4480 v4481 v4482 v4483 v4484 v4485 v4486 v4487 
##    11    20    44    15    11     4     8     7    11    10     5    11 
## v4488 v4489 v4490 v4491 v4492 v4493 v4494 v4495 v4496 v4497 v4498 v4499 
##    49     1     5     2     2     8    21     7     3    32     8    19 
## v4500 v4501 v4502 v4503 v4504 v4505 v4506 v4507 v4508 v4509 v4510 v4511 
##    23    10     3     3    10    19    17     6     5    34    11     6 
## v4512 v4513 v4514 v4515 v4516 v4517 v4518 v4519 v4520 v4521 v4522 v4523 
##    21     6    16     1    18     9    10     9   586     2    12     1 
## v4524 v4525 v4526 v4527 v4528 v4529 v4530 v4531 v4532 v4533 v4534 v4535 
##    36    68    12     8     7     8     3    23     5    51     6     8 
## v4536 v4537 v4538 v4539 v4540 v4541 v4542 v4543 v4544 v4545 v4546 v4547 
##    22    11     8    25    24    36    21    58     2    49    23     6 
## v4548 v4549 v4550 v4551 v4552 v4553 v4554 v4555 v4556 v4557 v4558 v4559 
##    13     7     3     9     9    10     5    12    15    12     9    13 
## v4560 v4561 v4562 v4563 v4564 v4565 v4566 v4567 v4568 v4569 v4570 v4571 
##    28    13     3    19     9     8     5     3    24   177     6    13 
## v4572 v4573 v4574 v4575 v4576 v4577 v4578 v4579 v4580 v4581 v4582 v4583 
##    12    14    89     1   301  1749    21    60    64    30     8   237 
## v4584 v4585 v4586 v4587 v4588 v4589 v4590 v4591 v4592 v4593 v4594 v4595 
##   111    15    69     4    30     3     3     3     3     1     6     1 
## v4596 v4597 v4598 v4599 v4600 v4601 v4602 v4603 v4604 v4605 v4606 v4607 
##    14    14     5    23     9    14    65   150     9   547    17    12 
## v4608 v4609 v4610 v4611 v4612 v4613 v4614 v4615 v4616 v4617 v4618 v4619 
##     6   510     7    55    10     5    79    21     5     9    70    71 
## v4620 v4621 v4622 v4623 v4624 v4625 v4626 v4627 v4628 v4629 v4630 v4631 
##    11    10    48     2   535    19    14    13     6    27    62     2 
## v4632 v4633 v4634 v4635 v4636 v4637 v4638 v4639 v4640 v4641 v4642 v4643 
##     8     4     2    16     3    13     6    18    24   100    42     2 
## v4644 v4645 v4646 v4647 v4648 v4649 v4650 v4651 v4652 v4653 v4654 v4655 
##    30    78     7     8     1    83     4    43     2    43     6     2 
## v4656 v4657 v4658 v4659 v4660 v4661 v4662 v4663 v4664 v4665 v4666 v4667 
##    81   146    69     6    34    36    64    84    91    41    12    20 
## v4668 v4669 v4670 v4671 v4672 v4673 v4674 v4675 v4676 v4677 v4678 v4679 
##    11    57    73     7    64    27     2    30    10    17     3     2 
## v4680 v4681 v4682 v4683 v4684 v4685 v4686 v4687 v4688 v4689 v4690 v4691 
##     3    53    42    17    27    34    12    34    26    40   501   422 
## v4692 v4693 v4694 v4695 v4696 v4697 v4698 v4699 v4700 v4701 v4702 v4703 
##    37    13     7     7     6     1     1     4    31     8     3     4 
## v4704 v4705 v4706 v4707 v4708 v4709 v4710 v4711 v4712 v4713 v4714 v4715 
##     3     2     7     1    13     4    20    30    35    20    26    45 
## v4716 v4717 v4719 v4720 v4721 v4722 v4723 v4724 v4725 v4726 v4727 v4728 
##    48     3    70    24    52    18    11     9    31    85     1     4 
## v4729 v4730 v4731 v4732 v4733 v4734 v4735 v4736 v4737 v4738 v4739 v4740 
##     4    13    23     9     6     2     3     4    11     9     4     1 
## v4741 v4742 v4743 v4744 v4745 v4746 v4747 v4748 v4749 v4750 v4751 v4752 
##     9     1     6     5     8    10     1    59    32   192    11    24 
## v4753 v4754 v4755 v4756 v4757 v4758 v4759 v4760 v4761 v4762 v4763 v4764 
##   179    18    13    78    53     3    11    68     1     4     1     2 
## v4765 v4766 v4767 v4768 v4769 v4770 v4771 v4772 v4773 v4774 v4775 v4776 
##     9     6     5    16    25    44    15     5    16     3    25     4 
## v4777 v4778 v4779 v4780 v4781 v4782 v4783 v4784 v4785 v4786 v4787 v4788 
##    11     9    15     8    12    27     2    25    11     9    25     2 
## v4789 v4790 v4791 v4792 v4793 v4794 v4795 v4796 v4797 v4798 v4799 v4800 
##   128     5    15     7    24    35    17    16    16    26    21     9 
## v4801 v4802 v4803 v4804 v4805 v4806 v4807 v4808 v4809 v4810 v4811 v4813 
##    74     9     6    13    17     3    27     9     4     8     6    69 
## v4814 v4815 v4816 v4817 v4818 v4819 v4820 v4821 v4822 v4823 v4824 v4825 
##     1     8    22    43     4     3    17     4    42   337   542     6 
## v4826 v4827 v4828 v4829 v4830 v4831 v4832 v4833 v4834 v4835 v4836 v4838 
##    33   116    41   125    78   663   956   112   977   106    14    49 
## v4839 v4840 v4841 v4842 v4843 v4844 v4845 v4846 v4847 v4848 v4850 v4851 
##     3   147     5    19     9     6     5     3    12     6    15    13 
## v4852 v4853 v4854 v4855 v4856 v4858 v4859 v4860 v4861 v4862 v4863 v4864 
##     5     6     1     5     5     5     3    71     5    66    42     6 
## v4865 v4866 v4867 v4868 v4869 v4870 v4871 v4872 v4873 v4874 v4875 v4876 
##     2    32    10     9     4    30     2     6     2    10     2     9 
## v4877 v4878 v4879 v4880 v4881 v4882 v4883 v4885 v4886 v4887 v4888 v4890 
##    30    31     4    17    11     8    37    33     6     7     6     2 
## v4891 v4892 v4893 v4894 v4895 v4896 v4897 v4898 v4899 v4900 v4901 v4902 
##     4    16     6     7     1     6    33     4     4     1     6     7 
## v4903 v4904 v4905 v4906 v4907 v4908 v4909 v4910 v4911 v4912 v4913 v4914 
##    10    21     3     9     5     4    18     6    37     5     3     6 
## v4915 v4916 v4917 v4918 v4919 v4920 v4921 v4922 v4923 v4924 v4925 v4926 
##     5     3     2     9    32    18    24     5    12    31    11    18 
## v4927 v4928 v4929 v4930 v4931 v4932 v4933 v4934 v4935 v4936 v4937 v4938 
##     8    14     5     6     4    15     8     4     1    56    11    17 
## v4939 v4940 v4941 v4942 v4943 v4946 v4947 v4948 v4949 v4950 v4951 v4952 
##     6    14     3     2     9     1    29    55    24    15    38    92 
## v4953 v4954 v4955 v4956 v4957 v4958 v4959 v4960 v4961 v4962 v4963 v4964 
##   205    48     5    17     4    11    87   429    75     9     4     8 
## v4965 v4966 v4967 v4969 v4970 v4971 v4972 v4973 v4974 v4975 v4976 v4977 
##    39    40    26    13     5    17    41     5     1    55    31    87 
## v4978 v4979 v4980 v4981 v4982 v4983 v4984 v4985 v4986 v4987 v4988 v4989 
##    37    57     5     7   650    26     4   235    30    37    13     9 
## v4990 v4991 v4993 v4994 v4995 v4996 v4997 v4998 v4999 v5000 v5001 v5002 
##    31     6    13    36     4    42    15   149     4    22     5     8 
## v5003 v5004 v5005 v5006 v5008 v5009 v5010 v5011 v5012 v5013 v5014 v5015 
##    18    10     4     3   240    57     4    15     2    14    57    19 
## v5016 v5017 v5018 v5019 v5020 v5021 v5022 v5023 v5024 v5025 v5026 v5027 
##   234    39     8     7    64     3   101     1    41    13    25    24 
## v5028 v5029 v5030 v5031 v5032 v5033 v5034 v5035 v5036 v5037 v5038 v5039 
##    19   105     9    42    29     2    14   100    29   119    30    21 
## v5040 v5042 v5043 v5044 v5045 v5046 v5047 v5048 v5049 v5050 v5051 v5052 
##     8     1     2     3     4    23    10    14     7     5    29   127 
## v5053 v5054 v5055 v5056 v5057 v5058 v5059 v5060 v5061 v5062 v5063 v5064 
##    49    80     2     4    69   470    48    64    56    96    11    23 
## v5065 v5066 v5067 v5068 v5069 v5070 v5071 v5072 v5073 v5074 v5075 v5076 
##   278    16    57   563   245    51    22    40    95     1    13    51 
## v5077 v5078 v5079 v5080 v5081 v5082 v5083 v5084 v5085 v5086 v5087 v5088 
##   128     9    23     2    20    94    17    11     5   141     6     3 
## v5089 v5090 v5091 v5092 v5093 v5094 v5095 v5096 v5097 v5098 v5099 v5100 
##    30    16     2    17    32     3   156     3     4     4    38     2 
## v5101 v5102 v5103 v5104 v5105 v5106 v5107 v5108 v5109 v5110 v5111 v5112 
##    23     7     5    14    11    27     6     9    30    11    35     8 
## v5113 v5114 v5115 v5116 v5117 v5118 v5119 v5120 v5121 v5122 v5123 v5124 
##     4     3     7     9     7     7     4     9    20     8     7     7 
## v5125 v5126 v5127 v5128 v5129 v5130 v5131 v5132 v5133 v5134 v5135 v5136 
##    18     3    10     1    21    47    16    19    56    50    86    35 
## v5137 v5138 v5139 v5140 v5141 v5142 v5143 v5144 v5145 v5146 v5147 v5148 
##   426   160    13    14    20     5    56   102     4     9    45     3 
## v5149 v5150 v5151 v5152 v5153 v5154 v5155 v5156 v5157 v5158 v5159 v5160 
##     2     9    21     6    46    58    93    10    16   159    17    11 
## v5161 v5162 v5163 v5164 v5165 v5166 v5167 v5168 v5169 v5170 v5171 v5172 
##    17     1    31    12    13    31    24    25    11    12    15    15 
## v5173 v5174 v5175 v5176 v5177 v5178 v5179 v5180 v5181 v5182 v5183 v5184 
##     2     4     6    14     4     5    44     9   117    43     7    26 
## v5185 v5186 v5187 v5188 v5189 v5190 v5191 v5192 v5193 v5194 v5195 v5196 
##    74    34    39    82    31     6     3     8    31     2     7     7 
## v5197 v5198 v5199 v5200 v5201 v5202 v5203 v5204 v5205 v5206 v5207 v5208 
##     5    10    44     7    56    16     3     3     7     4     1     4 
## v5209 v5210 v5211 v5212 v5213 v5214 v5215 v5216 v5217 v5218 v5219 v5220 
##     3     1     1     1     4     5     1     1     8     2     4     2 
## v5221 v5223 v5224 v5225 v5226 v5227 v5228 v5229 v5230 v5231 v5232 v5233 
##     8     3    20     3    15     4     4     6    50     9     5    18 
## v5234 v5235 v5236 v5237 v5238 v5239 v5240 v5241 v5242 v5243 v5244 v5245 
##    15    15     7    17    18     8     3    72    29    26   102    14 
## v5246 v5247 v5248 v5249 v5250 v5251 v5252 v5253 v5254 v5255 v5256 v5257 
##     4    13    12    79    32    79    19     7     6    13    12     3 
## v5258 v5259 v5260 v5261 v5262 v5263 v5264 v5265 v5266 v5267 v5268 v5269 
##     5     8     7    53     4     1    87    75    11    29    24    46 
## v5270 v5271 v5272 v5273 v5274 v5275 v5276 v5277 v5278 v5279 v5280 v5281 
##   186    23    13    24     8     6    13     4     2     3     1     1 
## v5282 v5283 v5284 v5285 v5286 v5287 v5288 v5289 v5290 v5291 v5292 v5294 
##    30     2    13     9    10     3     5     8    13     4     1     6 
## v5295 v5296 v5297 v5298 v5299 v5300 v5301 v5302 v5303 v5304 v5305 v5306 
##     6     3    61     5    45    52    38     2     8     3     7    20 
## v5307 v5308 v5309 v5310 v5311 v5312 v5313 v5314 v5315 v5316 v5317 v5318 
##     9     6    16   131    50     9     8    23    38     5    18    30 
## v5319 v5320 v5321 v5322 v5323 v5324 v5325 v5326 v5327 v5328 v5329 v5330 
##     7     3    11     2     6     6    20     9     3    11    34   107 
## v5331 v5332 v5333 v5334 v5335 v5336 v5337 v5338 v5339 v5340 v5341 v5342 
##    12    18     4    34    11    12    12     2     2     1    11     4 
## v5343 v5344 v5345 v5346 v5347 v5348 v5349 v5350 v5351 v5352 v5353 v5354 
##     9     8    31    17    16     6     7     2     7    10     8     1 
## v5355 v5356 v5357 v5358 v5359 v5360 v5361 v5362 v5363 v5364 v5365 v5366 
##     7    16     4     6     6     4    11    11     5     8    46    12 
## v5367 v5368 v5369 v5370 v5371 v5372 v5373 v5374 v5375 v5376 v5377 v5378 
##     4     8    32    19    27    37    14    17     6     8     3     5 
## v5379 v5380 v5381 v5382 v5383 v5384 v5385 v5386 v5387 v5388 v5389 v5390 
##    38     7     9     4    20    11    10     4    72     1     6     5 
## v5391 v5392 v5393 v5394 v5395 v5396 v5397 v5398 v5399 v5400 v5401 v5402 
##    19    46   199    16     5     5    20    11     6    20     6    21 
## v5403 v5404 v5405 v5406 v5407 v5408 v5409 v5410 v5411 v5412 v5413 v5414 
##     3     9     4    26    17    13    16     2     1    12     4    25 
## v5415 v5416 v5417 v5418 v5419 v5420 v5421 v5422 v5423 v5424 v5425 v5426 
##    43    18    14    21     3    18   118    28    31     4    28     3 
## v5427 v5428 v5429 v5430 v5431 v5432 v5433 v5434 v5435 v5436 v5437 v5438 
##    18    12     5    11    11    39    11    14    12     1     7     2 
## v5439 v5440 v5441 v5442 v5443 v5444 v5445 v5446 v5447 v5448 v5449 v5450 
##     1     8     1    28     2     5     9     4    38    14     7     1 
## v5451 v5452 v5453 v5454 v5455 v5456 v5457 v5458 v5459 v5460 v5461 v5462 
##     5     1    63    15    72     9     5    12     3     5     5     4 
## v5463 v5464 v5466 v5467 v5468 v5469 v5471 v5472 v5473 v5474 v5475 v5476 
##    20    13     2    15     9     9    99     5     5     5     5    24 
## v5477 v5478 v5479 v5480 v5481 v5482 v5483 v5484 v5485 v5486 v5487 v5488 
##    25    29    15     6    41     6     2     7     3     1    14    17 
## v5489 v5490 v5491 v5492 v5493 v5494 v5495 v5496 v5497 v5498 v5499 v5500 
##     2     7    60    26    18   174    46     4     4    27     4     1 
## v5501 v5502 v5503 v5504 v5505 v5506 v5507 v5508 v5509 v5510 v5511 v5512 
##     1     8     1     6    94     4     8    28     2     7    18     8 
## v5513 v5514 v5516 v5517 v5518 v5519 v5520 v5521 v5522 v5523 v5524 v5525 
##    22     8    21     5     1    16    23    13     2    23     6    22 
## v5526 v5527 v5528 v5529 v5530 v5531 v5532 v5533 v5534 v5535 v5536 v5537 
##     3    10     5    48   200    78    16    57     4     5     5     2 
## v5538 v5539 v5540 v5541 v5542 v5543 v5544 v5545 v5546 v5547 v5548 v5549 
##     5     6    92    11     4    13     3    29     8     6     2    10 
## v5550 v5551 v5552 v5553 v5554 v5555 v5556 v5557 v5559 v5560 v5561 v5562 
##     9     2    15    10     4     3     1     1     9    16     9     1 
## v5563 v5564 v5565 v5566 v5567 v5568 v5569 v5570 v5571 v5572 v5573 v5574 
##     4    10     5     5     2     4    11    26     4    32     7    18 
## v5575 v5576 v5577 v5578 v5579 v5580 v5581 v5582 v5583 v5585 v5586 v5587 
##    11     5     4    22    12     3     3    14     6     8    27     4 
## v5588 v5590 v5591 v5592 v5593 v5594 v5595 v5596 v5597 v5598 v5599 v5600 
##    15     4     8     8    21    11    20   377     7     3     3     6 
## v5601 v5602 v5603 v5604 v5605 v5606 v5607 v5608 v5609 v5610 v5611 v5612 
##    69     4     1     5    12    29     1     1   330     3     1    94 
## v5613 v5614 v5615 v5616 v5617 v5618 v5619 v5620 v5621 v5622 v5623 v5624 
##    14     2     6     3     8     2     1    10     3     6     9     2 
## v5625 v5626 v5627 v5628 v5629 v5630 v5631 v5632 v5633 v5634 v5635 v5636 
##     2    26     2    13     3     1     3     8     3     4    14    16 
## v5637 v5638 v5639 v5640 v5641 v5642 v5643 v5644 v5645 v5646 v5647 v5648 
##     5    33     2     2     2     2    11     6     4     4     8     3 
## v5649 v5650 v5651 v5652 v5653 v5654 v5655 v5656 v5657 v5658 v5659 v5660 
##    10     1     1     2     1    15     4     4     5    16     7     1 
## v5661 v5662 v5663 v5664 v5665 v5666 v5667 v5668 v5669 v5670 v5671 v5672 
##     3     1    26     2     1     3     1     8     2    27    11     2 
## v5673 v5674 v5675 v5676 v5677 v5678 v5679 v5680 v5681 v5683 v5684 v5685 
##     1     3     4    24    41     1     1     4    10     4    23     3 
## v5686 v5687 v5688 v5689 v5690 v5691 v5693 v5694 v5695 v5696 v5697 v5698 
##     1    11    11    11    10    53     7     2    19    42   231    22 
## v5699 v5700 v5701 v5702 v5703 v5704 v5705 v5706 v5707 v5709 v5710 v5711 
##    74   177    54     5    36    31    51    53     1     7     3   314 
## v5712 v5713 v5714 v5715 v5716 v5717 v5718 v5719 v5720 v5721 v5722 v5723 
##    14    45    14    12     2   155   190     4    91   375    16   113 
## v5724 v5725 v5726 v5727 v5728 v5729 v5730 v5731 v5732 v5733 v5734 v5735 
##    35     8     3    35    68    41   114    26     7   238    72    28 
## v5736 v5737 v5738 v5739 v5740 v5741 v5742 v5743 v5744 v5745 v5746 v5747 
##    51    70    40     2    64    25    25    10    40    66     7    36 
## v5748 v5749 v5750 v5751 v5752 v5753 v5754 v5755 v5756 v5757 v5758 v5759 
##    18    12    24    20    20    25    16    39    86    34    32    34 
## v5760 v5761 v5762 v5763 v5764 v5765 v5766 v5767 v5768 v5769 v5770 v5771 
##     9     3     8    57     3     3     1     3     1     2     1     8 
## v5772 v5773 v5774 v5775 v5776 v5777 v5778 v5779 v5780 v5781 v5782 v5783 
##    41     5    16    16     2    45    13    18     3    45    32    11 
## v5784 v5785 v5786 v5787 v5788 v5789 v5790 v5791 v5792 v5793 v5794 v5795 
##     3    11    15    28     3     5    23     2    19    21     7    18 
## v5796 v5797 v5798 v5799 v5800 v5801 v5802 v5803 v5804 v5805 v5806 v5807 
##    13     7     3     1   112    36     7     2     1     6    17    14 
## v5808 v5809 v5810 v5811 v5812 v5813 v5814 v5815 v5816 v5817 v5818 v5819 
##    20    10     3    16    13     3    11    14    34    12     1     9 
## v5820 v5822 v5823 v5824 v5825 v5826 v5827 v5828 v5829 v5830 v5831 v5832 
##     7     1    15     6    11     6     3    10     2    42    12    15 
## v5833 v5834 v5835 v5836 v5837 v5838 v5839 v5840 v5841 v5842 v5843 v5844 
##    20    10     2     2     1     8     1     1     5     2    11     6 
## v5845 v5846 v5847 v5848 v5849 v5850 v5851 v5852 v5853 v5854 v5855 v5856 
##    20     7    19     1    21    10     2    21     2     5    20     1 
## v5857 v5858 v5859 v5860 v5861 v5862 v5863 v5864 v5865 v5866 v5867 v5868 
##    10     9     1     4     6    22     8     3     6     3     2     3 
## v5869 v5870 v5871 v5872 v5873 v5874 v5875 v5876 v5877 v5878 v5879 v5880 
##     8     1     3     5     5     1     2     1     1     3    15     7 
## v5881 v5882 v5883 v5884 v5885 v5886 v5887 v5888 v5890 v5891 v5893 v5894 
##     6     9    54    42     1    14    18     4    68     2     3     5 
## v5895 v5896 v5897 v5898 v5899 v5900 v5901 v5902 v5903 v5904 v5905 v5906 
##    38    83     8    12    17     3    10    41     5    37    19     2 
## v5907 v5908 v5909 v5910 v5911 v5912 v5913 v5914 v5915 v5916 v5917 v5918 
##    15    14    32    19    23     2     5     9    46     7     2    15 
## v5919 v5920 v5921 v5922 v5923 v5924 v5925 v5926 v5927 v5928 v5929 v5930 
##    14     6    11    10    19     3     2     5     2     8     2    19 
## v5931 v5932 v5933 v5934 v5935 v5936 v5937 v5938 v5939 v5940 v5941 v5942 
##     1     3     4    32     7     2     3     4     6     5     2     2 
## v5943 v5944 v5945 v5946 v5947 v5948 v5949 v5950 v5951 v5952 v5953 v5954 
##     2    13     2    10     2     2     3    32     6     2     7     1 
## v5955 v5956 v5957 v5958 v5959 v5960 v5961 v5962 v5963 v5964 v5965 v5966 
##     3     1     3     3     4    14     6    10    16    28     3     8 
## v5967 v5968 v5969 v5971 v5972 v5973 v5974 v5975 v5976 v5977 v5978 v5979 
##   112    12     2     1     3     4     6    18     1     2     9   674 
## v5980 v5981 v5982 v5983 v5984 v5985 v5986 v5987 v5988 v5989 v5990 v5991 
##     8    32    57    18     1    15     4    31    14     4    21     3 
## v5992 v5993 v5994 v5995 v5996 v5997 v5998 v5999 v6000 v6001 v6002 v6003 
##     3    46     2     3     5     1     1     3     6    80     1    50 
## v6004 v6005 v6006 v6007 v6008 v6009 v6011 v6012 v6013 v6014 v6015 v6016 
##     1     1     5     2     1     3     1     5     5    16    21    77 
## v6017 v6018 v6019 v6020 v6021 v6022 v6023 v6024 v6025 v6026 v6027 v6028 
##     1     2     2     1     4     4     1     1     4     1     1     1 
## v6029 v6030 v6031 v6032 v6033 v6034 v6035 v6036 v6037 v6038 v6039 v6040 
##     1     1     3    28    11     2     1     1     3     2     1     1 
## v6041 v6042 v6043 v6044 v6045 v6046 v6048 v6050 v6051 v6052 v6053 v6054 
##     4     1     2     1     4     5     1     1     1     3     4     1 
## v6055 v6056 v6057 v6058 v6059 v6060 v6061 v6062 v6063 v6064 v6065 v6066 
##     1     4     5     1     1     2     1     3     1     1     1     2 
## v6067 v6068 v6069 v6070 
##     4     1     1     7

Then table of counts of transactions per product:

(totP <- table(sales$Prod))
## 
##    p1    p2    p3    p4    p5    p6    p7    p8    p9   p10   p11   p12 
##   210    81    35   114   161    63    52    11    38    38   266    64 
##   p13   p14   p15   p16   p17   p18   p19   p20   p21   p22   p23   p24 
##    55    40   147   184    76    19   109   170    25    31    56    29 
##   p25   p26   p27   p28   p29   p30   p31   p32   p33   p34   p35   p36 
##    36   128    64    45    42    69    24    47   213    46   198   137 
##   p37   p38   p39   p40   p41   p42   p43   p44   p45   p46   p47   p48 
##    62    13    14    15    77    96    28   121    78   156    13    21 
##   p49   p50   p51   p52   p53   p54   p55   p56   p57   p58   p59   p60 
##    88    43    46    24    25    13    13    32   105    18    23    34 
##   p61   p62   p63   p64   p65   p66   p67   p68   p69   p70   p71   p72 
##    96    30    86    20    15    40    47    36    22    33    48    35 
##   p73   p74   p75   p76   p77   p78   p79   p80   p81   p82   p83   p84 
##    27    94    14    11    54    12    30    16    51    26   136    29 
##   p85   p86   p87   p88   p89   p90   p91   p92   p93   p94   p95   p96 
##    16    46    26    63    17    77    57    45    20    27    82    90 
##   p97   p98   p99  p100  p101  p102  p103  p104  p105  p106  p107  p108 
##    44    51    30   165    38    12    21    26    25    27    24    35 
##  p109  p110  p111  p112  p113  p114  p115  p116  p117  p118  p119  p120 
##    52    39    26   113    75    55   130    68    23    30    29    12 
##  p121  p122  p123  p124  p125  p126  p127  p128  p129  p130  p131  p132 
##    50   169    15    13    14    20    32    71    50   139    14    29 
##  p133  p134  p135  p136  p137  p138  p139  p140  p141  p142  p143  p144 
##    15    14    23   157    36    19    44    19    11    28    63    33 
##  p145  p146  p147  p148  p149  p150  p151  p152  p153  p154  p155  p156 
##    14    58    13    37    17    31    31    63    55    18    38   133 
##  p157  p158  p159  p160  p161  p162  p163  p164  p165  p166  p167  p168 
##    39   112    23    52    16    12    13    14    29   124    17    45 
##  p169  p170  p171  p172  p173  p174  p175  p176  p177  p178  p179  p180 
##    11    14   269    14    12    17    16    13    35   143    79    19 
##  p181  p182  p183  p184  p185  p186  p187  p188  p189  p190  p191  p192 
##   139    42    17    12    23    29    19    27    11    19    90    26 
##  p193  p194  p195  p196  p197  p198  p199  p200  p201  p202  p203  p204 
##    13    23    16    11    26    15   137    50    23    34    41    48 
##  p205  p206  p207  p208  p209  p210  p211  p212  p213  p214  p215  p216 
##    91    42    46    14    11    27    58    12    84   138   163    80 
##  p217  p218  p219  p220  p221  p222  p223  p224  p225  p226  p227  p228 
##    18    41    13    54    88    77    19    17   228   194   109   114 
##  p229  p230  p231  p232  p233  p234  p235  p236  p237  p238  p239  p240 
##    21    95    27    57    18    26    80    12   130    44    12    36 
##  p241  p242  p243  p244  p245  p246  p247  p248  p249  p250  p251  p252 
##    26    27    11    20    97    20    17    12    61    65    34    30 
##  p253  p254  p255  p256  p257  p258  p259  p260  p261  p262  p263  p264 
##    28    39    33    82    50    34    20    15    33    12    16    13 
##  p265  p266  p267  p268  p269  p270  p271  p272  p273  p274  p275  p276 
##    24    17    19    42    62    83    18    76    19    91    63    37 
##  p277  p278  p279  p280  p281  p282  p283  p284  p285  p286  p287  p288 
##    20    61    29    19    16    82    44    86   175    41   123    93 
##  p289  p290  p291  p292  p293  p294  p295  p296  p297  p298  p299  p300 
##   173   128    43    50   101   116    67    32    21    46    22    57 
##  p301  p302  p303  p304  p305  p306  p307  p308  p309  p310  p311  p312 
##    31    16    18    88    43    21    17    32    21    17    11    36 
##  p313  p314  p315  p316  p317  p318  p319  p320  p321  p322  p323  p324 
##    27   191    44    21    48    58    90    22    31    52    35    72 
##  p325  p326  p327  p328  p329  p330  p331  p332  p333  p334  p335  p336 
##    20    16    22    50    19    41    23    20    19    22    44    11 
##  p337  p338  p339  p340  p341  p342  p343  p344  p345  p346  p347  p348 
##    26    20    25    26    34   146    29    18    13    14    33    16 
##  p349  p350  p351  p352  p353  p354  p355  p356  p357  p358  p359  p360 
##    12    12    12    22    14    29    36    19    11    24    12    12 
##  p361  p362  p363  p364  p365  p366  p367  p368  p369  p370  p371  p372 
##    20    28    42    29    85    38    34    20    56   141    94   113 
##  p373  p374  p375  p376  p377  p378  p379  p380  p381  p382  p383  p384 
##    20    29    11    28    21    53    73    31    20    26    71    31 
##  p385  p386  p387  p388  p389  p390  p391  p392  p393  p394  p395  p396 
##    15    26    13    12    21    61    28    19    28    69    26    20 
##  p397  p398  p399  p400  p401  p402  p403  p404  p405  p406  p407  p408 
##    23    14    41    26    44    14    17    17    25    22    20    23 
##  p409  p410  p411  p412  p413  p414  p415  p416  p417  p418  p419  p420 
##    25    31    36    46   135    43    17    84    26    28    74    21 
##  p421  p422  p423  p424  p425  p426  p427  p428  p429  p430  p431  p432 
##    49    77    21   118    85    47   119    20    28    32   119   389 
##  p433  p434  p435  p436  p437  p438  p439  p440  p441  p442  p443  p444 
##    23    52    32    53    11    58   108    33    18   250    37   147 
##  p445  p446  p447  p448  p449  p450  p451  p452  p453  p454  p455  p456 
##   201    44    45    83    46   166    61    78   318    21    50    29 
##  p457  p458  p459  p460  p461  p462  p463  p464  p465  p466  p467  p468 
##    27    54    79    36   114    30    29    48    26    15    14    14 
##  p469  p470  p471  p472  p473  p474  p475  p476  p477  p478  p479  p480 
##    22    41    75   107    55    42    17    19    40    44    40    38 
##  p481  p482  p483  p484  p485  p486  p487  p488  p489  p490  p491  p492 
##    22    20    28    20    47    22    31    35    27    62    46    71 
##  p493  p494  p495  p496  p497  p498  p499  p500  p501  p502  p503  p504 
##    95    64    60    35    77    55    25    32    76   172    13    14 
##  p505  p506  p507  p508  p509  p510  p511  p512  p513  p514  p515  p516 
##    51    32    24    31    25    11    36    43    12    22    14    57 
##  p517  p518  p519  p520  p521  p522  p523  p524  p525  p526  p527  p528 
##    14    15    16    61    12    18    15    24    12    26    62    29 
##  p529  p530  p531  p532  p533  p534  p535  p536  p537  p538  p539  p540 
##    33    47    13   144    21    13    62   132    40   682    22    15 
##  p541  p542  p543  p544  p545  p546  p547  p548  p549  p550  p551  p552 
##    43    72    26    64   214    17    82    40    53    15    69    67 
##  p553  p554  p555  p556  p557  p558  p559  p560  p561  p562  p563  p564 
##    22    15    68    54    48    27    69    19    36    28    18    25 
##  p565  p566  p567  p568  p569  p570  p571  p572  p573  p574  p575  p576 
##    18   104    91    26    38    66    15    36    88    27    30    14 
##  p577  p578  p579  p580  p581  p582  p583  p584  p585  p586  p587  p588 
##    30    28    20    18    11    17    20    32    32    61    50    47 
##  p589  p590  p591  p592  p593  p594  p595  p596  p597  p598  p599  p600 
##    98    30    18    51    33    21   374    27    19    26    31    90 
##  p601  p602  p603  p604  p605  p606  p607  p608  p609  p610  p611  p612 
##    63    14    32    39    33    75    14    25    16    12    12    19 
##  p613  p614  p615  p616  p617  p618  p619  p620  p621  p622  p623  p624 
##    14    35    23    21    12   167    26    21    42    64    36    64 
##  p625  p626  p627  p628  p629  p630  p631  p632  p633  p634  p635  p636 
##    12    38    16    14    18    22    17    12    11    11    40    25 
##  p637  p638  p639  p640  p641  p642  p643  p644  p645  p646  p647  p648 
##   104    11    15    28    13    20    15    35    24    21    21    15 
##  p649  p650  p651  p652  p653  p654  p655  p656  p657  p658  p659  p660 
##    15    12    22    16    22    37    12    25    19    16    14    19 
##  p661  p662  p663  p664  p665  p666  p667  p668  p669  p670  p671  p672 
##    34    11    11    42    26    45    14    26    11    15    18    24 
##  p673  p674  p675  p676  p677  p678  p679  p680  p681  p682  p683  p684 
##    43    21    17    38    28    16    12    20    26    83    21    17 
##  p685  p686  p687  p688  p689  p690  p691  p692  p693  p694  p695  p696 
##    15    20    35    11    13    14    31    26    16    35    14    17 
##  p697  p698  p699  p700  p701  p702  p703  p704  p705  p706  p707  p708 
##    81    60    26    15    40    19    19    13    35    15    84    21 
##  p709  p710  p711  p712  p713  p714  p715  p716  p717  p718  p719  p720 
##    59    74    31    29    19    24    50    29    63    17    37   100 
##  p721  p722  p723  p724  p725  p726  p727  p728  p729  p730  p731  p732 
##    19    32    29    21    39    18    37    21    25    20    35    14 
##  p733  p734  p735  p736  p737  p738  p739  p740  p741  p742  p743  p744 
##    12    23    14    26    52    36    30    26    65    96    23    42 
##  p745  p746  p747  p748  p749  p750  p751  p752  p753  p754  p755  p756 
##    16    36    76    16    28    11    40    33    12    16    29    18 
##  p757  p758  p759  p760  p761  p762  p763  p764  p765  p766  p767  p768 
##    44    20    17    13    46    14    79    22    67    25    38    73 
##  p769  p770  p771  p772  p773  p774  p775  p776  p777  p778  p779  p780 
##    25    30    18    33    12   142    89    47   313   378   100   232 
##  p781  p782  p783  p784  p785  p786  p787  p788  p789  p790  p791  p792 
##   132   446   543   267   162    37    52   186   117   149    56    16 
##  p793  p794  p795  p796  p797  p798  p799  p800  p801  p802  p803  p804 
##   361    90    37    44    36    13    51   265   181   199    61   254 
##  p805  p806  p807  p808  p809  p810  p811  p812  p813  p814  p815  p816 
##   404   154   192   318    57   200    40   103   149    64   204    42 
##  p817  p818  p819  p820  p821  p822  p823  p824  p825  p826  p827  p828 
##    69    47   231    25   257   239   289    87    68    11    54    30 
##  p829  p830  p831  p832  p833  p834  p835  p836  p837  p838  p839  p840 
##   162   116    67   208   105    91    88    49   254   181    69    80 
##  p841  p842  p843  p844  p845  p846  p847  p848  p849  p850  p851  p852 
##    39    68    48    18    98   120   220   140   205   167    27   111 
##  p853  p854  p855  p856  p857  p858  p859  p860  p861  p862  p863  p864 
##    17   187    70   352   132    36   325   400   310    90    45   126 
##  p865  p866  p867  p868  p869  p870  p871  p872  p873  p874  p875  p876 
##   117   300   123   223    27    93   291   129    38    61    43   102 
##  p877  p878  p879  p880  p881  p882  p883  p884  p885  p886  p887  p888 
##    96   128   134    50    38    35    25   167    19    28   258   426 
##  p889  p890  p891  p892  p893  p894  p895  p896  p897  p898  p899  p900 
##   422    23    20   205    12    12    44    15    21    43    14    19 
##  p901  p902  p903  p904  p905  p906  p907  p908  p909  p910  p911  p912 
##    26    18    18    38    26    85   148    33    27    17    31    18 
##  p913  p914  p915  p916  p917  p918  p919  p920  p921  p922  p923  p924 
##    63    86    69   108    28   748    98   269    95    54    35    56 
##  p925  p926  p927  p928  p929  p930  p931  p932  p933  p934  p935  p936 
##    61    66    68   193    20    27   455   116    73    25    58   311 
##  p937  p938  p939  p940  p941  p942  p943  p944  p945  p946  p947  p948 
##    32    53    50    34    50    24    25    54    15    27    40    49 
##  p949  p950  p951  p952  p953  p954  p955  p956  p957  p958  p959  p960 
##   135    16   115   839    66   204   131    81   111   225    30   150 
##  p961  p962  p963  p964  p965  p966  p967  p968  p969  p970  p971  p972 
##    41    47   182   155   124   252    18    86    42    22    38    79 
##  p973  p974  p975  p976  p977  p978  p979  p980  p981  p982  p983  p984 
##    45    83    23    95    58    81    24   770    54    85    87    61 
##  p985  p986  p987  p988  p989  p990  p991  p992  p993  p994  p995  p996 
##   122    95   236    35    93    65   122   207   191   183    77   123 
##  p997  p998  p999 p1000 p1001 p1002 p1003 p1004 p1005 p1006 p1007 p1008 
##    34   241    73   900   532   150    12   113    51    49    13    65 
## p1009 p1010 p1011 p1012 p1013 p1014 p1015 p1016 p1017 p1018 p1019 p1020 
##    56    36    22    24    17   212    78    31    19    47   103    19 
## p1021 p1022 p1023 p1024 p1025 p1026 p1027 p1028 p1029 p1030 p1031 p1032 
##    27    17    46    62    45    38    59    47    27    21    39    43 
## p1033 p1034 p1035 p1036 p1037 p1038 p1039 p1040 p1041 p1042 p1043 p1044 
##    27    72    65    82    27    59    40    28   105   416    53    63 
## p1045 p1046 p1047 p1048 p1049 p1050 p1051 p1052 p1053 p1054 p1055 p1056 
##    13   146    19   115    40    46    89    31   203    64    77    67 
## p1057 p1058 p1059 p1060 p1061 p1062 p1063 p1064 p1065 p1066 p1067 p1068 
##    78    44   244   118   152   184    75    31    11    35    44   130 
## p1069 p1070 p1071 p1072 p1073 p1074 p1075 p1076 p1077 p1078 p1079 p1080 
##    32   138    83    25    11    63    18   143   124    61    15    36 
## p1081 p1082 p1083 p1084 p1085 p1086 p1087 p1088 p1089 p1090 p1091 p1092 
##    55    48    71   117   110   241   138   205    15    65    15    60 
## p1093 p1094 p1095 p1096 p1097 p1098 p1099 p1100 p1101 p1102 p1103 p1104 
##    61    17   127   241   161    56   193   372   633    48   690   128 
## p1105 p1106 p1107 p1108 p1109 p1110 p1111 p1112 p1113 p1114 p1115 p1116 
##   125    14   154    76   256    12   326   361   104   285    68    49 
## p1117 p1118 p1119 p1120 p1121 p1122 p1123 p1124 p1125 p1126 p1127 p1128 
##    97   128    94   370   685   313   256   140  3923    31    26    63 
## p1129 p1130 p1131 p1132 p1133 p1134 p1135 p1136 p1137 p1138 p1139 p1140 
##    56   117    80    19    18    39    23    43    18   193    40    68 
## p1141 p1142 p1143 p1144 p1145 p1146 p1147 p1148 p1149 p1150 p1151 p1152 
##    32    73    97    63    84   125    44   238   107    17   470   102 
## p1153 p1154 p1155 p1156 p1157 p1158 p1159 p1160 p1161 p1162 p1163 p1164 
##   134    57   146    71    35    69    81    54    75   164    24    28 
## p1165 p1166 p1167 p1168 p1169 p1170 p1171 p1172 p1173 p1174 p1175 p1176 
##   338   218    64    67    15    11    30    30    12    77    72    13 
## p1177 p1178 p1179 p1180 p1181 p1182 p1183 p1184 p1185 p1186 p1187 p1188 
##    25    18    12    18    18    59    29    31    67    88    93   113 
## p1189 p1190 p1191 p1192 p1193 p1194 p1195 p1196 p1197 p1198 p1199 p1200 
##    93    48   674    25    59   274    22   584    13    11   177    17 
## p1201 p1202 p1203 p1204 p1205 p1206 p1207 p1208 p1209 p1210 p1211 p1212 
##   107    26    11    20    50    77   132   110    57    25    51   619 
## p1213 p1214 p1215 p1216 p1217 p1218 p1219 p1220 p1221 p1222 p1223 p1224 
##   513   991  1317   140    14    47   461    73   493    35    23    32 
## p1225 p1226 p1227 p1228 p1229 p1230 p1231 p1232 p1233 p1234 p1235 p1236 
##   380   277    14   288   119    70    72    85    32   127    61   106 
## p1237 p1238 p1239 p1240 p1241 p1242 p1243 p1244 p1245 p1246 p1247 p1248 
##    65   314   161   343    99   168    81   108    46    65    85   165 
## p1249 p1250 p1251 p1252 p1253 p1254 p1255 p1256 p1257 p1258 p1259 p1260 
##    15    98   372   179   100   504    44   101    37   570   117    13 
## p1261 p1262 p1263 p1264 p1265 p1266 p1267 p1268 p1269 p1270 p1271 p1272 
##    30   276    54    48    61    52    56    19    62    17    68    76 
## p1273 p1274 p1275 p1276 p1277 p1278 p1279 p1280 p1281 p1282 p1283 p1284 
##    15   210   104    11    29    46    27    32    65    27    73    12 
## p1285 p1286 p1287 p1288 p1289 p1290 p1291 p1292 p1293 p1294 p1295 p1296 
##    20    13    83    17    30    39    77    54    90    75   136    38 
## p1297 p1298 p1299 p1300 p1301 p1302 p1303 p1304 p1305 p1306 p1307 p1308 
##    98    16   176    53   112   101    29    14    20    15    14    37 
## p1309 p1310 p1311 p1312 p1313 p1314 p1315 p1316 p1317 p1318 p1319 p1320 
##    37   182    35    17   124    37    68    50   102    15    18    11 
## p1321 p1322 p1323 p1324 p1325 p1326 p1327 p1328 p1329 p1330 p1331 p1332 
##    62    15   114   156    99    59   525   244    60   107    92    20 
## p1333 p1334 p1335 p1336 p1337 p1338 p1339 p1340 p1341 p1342 p1343 p1344 
##    14    34   125    43   110    54    12    22    74    60    27    66 
## p1345 p1346 p1347 p1348 p1349 p1350 p1351 p1352 p1353 p1354 p1355 p1356 
##    24    35    48    13    17    31    44    12    15    53    18    22 
## p1357 p1358 p1359 p1360 p1361 p1362 p1363 p1364 p1365 p1366 p1367 p1368 
##    46    26    13    11    63    22    67    29    11    11    91    43 
## p1369 p1370 p1371 p1372 p1373 p1374 p1375 p1376 p1377 p1378 p1379 p1380 
##    92    46    11    41    62    89    88    30    97    25    25    53 
## p1381 p1382 p1383 p1384 p1385 p1386 p1387 p1388 p1389 p1390 p1391 p1392 
##   198    13    26    55    28    47    16    11    26   189    69    13 
## p1393 p1394 p1395 p1396 p1397 p1398 p1399 p1400 p1401 p1402 p1403 p1404 
##   247    48   166   211    38   467    44    64    83    12    18    31 
## p1405 p1406 p1407 p1408 p1409 p1410 p1411 p1412 p1413 p1414 p1415 p1416 
##    67    26    52   141    74    65    94    31   192    33    15    76 
## p1417 p1418 p1419 p1420 p1421 p1422 p1423 p1424 p1425 p1426 p1427 p1428 
##    20    37    58   317   319    82    30   353   156   129    15    93 
## p1429 p1430 p1431 p1432 p1433 p1434 p1435 p1436 p1437 p1438 p1439 p1440 
##    99    76    79    15    12    85   146   707  1720   212   149    61 
## p1441 p1442 p1443 p1444 p1445 p1446 p1447 p1448 p1449 p1450 p1451 p1452 
##    85   133    35   110    23    56    70    28   110    22    30    57 
## p1453 p1454 p1455 p1456 p1457 p1458 p1459 p1460 p1461 p1462 p1463 p1464 
##    51   172   537    39   574    35    81    48    12   180    95   295 
## p1465 p1466 p1467 p1468 p1469 p1470 p1471 p1472 p1473 p1474 p1475 p1476 
##    30    33   487   334    17   202   273    16    47    19    43    21 
## p1477 p1478 p1479 p1480 p1481 p1482 p1483 p1484 p1485 p1486 p1487 p1488 
##   105    60    78   165    94    63    39    38    39    29   198    27 
## p1489 p1490 p1491 p1492 p1493 p1494 p1495 p1496 p1497 p1498 p1499 p1500 
##   101    54    16   129    37    12    54    46   144    20    20    11 
## p1501 p1502 p1503 p1504 p1505 p1506 p1507 p1508 p1509 p1510 p1511 p1512 
##    75    17    25   262   216    36    23    13   517    97   624   146 
## p1513 p1514 p1515 p1516 p1517 p1518 p1519 p1520 p1521 p1522 p1523 p1524 
##    29    18    76   196   367    21    68    56    22   123    52   111 
## p1525 p1526 p1527 p1528 p1529 p1530 p1531 p1532 p1533 p1534 p1535 p1536 
##    23   174   102   510   303    27    15    19   283   394   157    66 
## p1537 p1538 p1539 p1540 p1541 p1542 p1543 p1544 p1545 p1546 p1547 p1548 
##    14    34    56    31    51    51    16    33    34    53    46    63 
## p1549 p1550 p1551 p1552 p1553 p1554 p1555 p1556 p1557 p1558 p1559 p1560 
##   327    40    28    44    45    83    79    30    46    17    54    52 
## p1561 p1562 p1563 p1564 p1565 p1566 p1567 p1568 p1569 p1570 p1571 p1572 
##    94    77    52    58    32    17    93    11    64    12    47   168 
## p1573 p1574 p1575 p1576 p1577 p1578 p1579 p1580 p1581 p1582 p1583 p1584 
##   134    38    45   212    32   304    40   241   455   176   971   326 
## p1585 p1586 p1587 p1588 p1589 p1590 p1591 p1592 p1593 p1594 p1595 p1596 
##   601   189   409   442    61   294   132   175    69    52    97   106 
## p1597 p1598 p1599 p1600 p1601 p1602 p1603 p1604 p1605 p1606 p1607 p1608 
##   438   664   540   256   738   163    68   274   279   192   265    59 
## p1609 p1610 p1611 p1612 p1613 p1614 p1615 p1616 p1617 p1618 p1619 p1620 
##   103    26    43    22   309    27    85   210   203    50   154    92 
## p1621 p1622 p1623 p1624 p1625 p1626 p1627 p1628 p1629 p1630 p1631 p1632 
##    39    72    38    44    15    20   143   158   312    99    33    13 
## p1633 p1634 p1635 p1636 p1637 p1638 p1639 p1640 p1641 p1642 p1643 p1644 
##   172   177    72    11   138    44    50    15    42    14    13    30 
## p1645 p1646 p1647 p1648 p1649 p1650 p1651 p1652 p1653 p1654 p1655 p1656 
##    32    23    18    51    19    28    27    24    11    31    15    30 
## p1657 p1658 p1659 p1660 p1661 p1662 p1663 p1664 p1665 p1666 p1667 p1668 
##    11    45    49   326    41    12    26   457    50    32   369   605 
## p1669 p1670 p1671 p1672 p1673 p1674 p1675 p1676 p1677 p1678 p1679 p1680 
##   523   109    58   198   161   395   107   724    18    35   433    44 
## p1681 p1682 p1683 p1684 p1685 p1686 p1687 p1688 p1689 p1690 p1691 p1692 
##   290   369    49    84    21    80    32    16    23   240    82   128 
## p1693 p1694 p1695 p1696 p1697 p1698 p1699 p1700 p1701 p1702 p1703 p1704 
##    29    70    13   110    86    23   199    26    42   454    33    47 
## p1705 p1706 p1707 p1708 p1709 p1710 p1711 p1712 p1713 p1714 p1715 p1716 
##   109  1105    94   452    32   791    31   274   179    53   485   106 
## p1717 p1718 p1719 p1720 p1721 p1722 p1723 p1724 p1725 p1726 p1727 p1728 
##   134    53   273   109   169    21   417   198   120    27    20   644 
## p1729 p1730 p1731 p1732 p1733 p1734 p1735 p1736 p1737 p1738 p1739 p1740 
##   335    20    94   283    35   547   131   316    20   189    19   110 
## p1741 p1742 p1743 p1744 p1745 p1746 p1747 p1748 p1749 p1750 p1751 p1752 
##    18    14    16    26    18    22   194    52   188    18    88    23 
## p1753 p1754 p1755 p1756 p1757 p1758 p1759 p1760 p1761 p1762 p1763 p1764 
##    25    21    18    48    62    16    66   258   140   152    77    41 
## p1765 p1766 p1767 p1768 p1769 p1770 p1771 p1772 p1773 p1774 p1775 p1776 
##    19   212    31    25    85    28    32    13    67   291   697    24 
## p1777 p1778 p1779 p1780 p1781 p1782 p1783 p1784 p1785 p1786 p1787 p1788 
##    57   155   194   119    36    27    60   160    32    13    26    38 
## p1789 p1790 p1791 p1792 p1793 p1794 p1795 p1796 p1797 p1798 p1799 p1800 
##   114    43    13    25    76    19    43    60    33    44    35    73 
## p1801 p1802 p1803 p1804 p1805 p1806 p1807 p1808 p1809 p1810 p1811 p1812 
##    96    80   103    55    23    23    76    38    28    84    99    16 
## p1813 p1814 p1815 p1816 p1817 p1818 p1819 p1820 p1821 p1822 p1823 p1824 
##   116   639    78   244   204   467    16    19   189    37    20    18 
## p1825 p1826 p1827 p1828 p1829 p1830 p1831 p1832 p1833 p1834 p1835 p1836 
##    52    75   135    76   466   230   221    80   855    22   267   216 
## p1837 p1838 p1839 p1840 p1841 p1842 p1843 p1844 p1845 p1846 p1847 p1848 
##    24   105    73   123    51   233   100    96    30   386   214    43 
## p1849 p1850 p1851 p1852 p1853 p1854 p1855 p1856 p1857 p1858 p1859 p1860 
##    49    27   113    20    44   196    27   144   123    19   233   134 
## p1861 p1862 p1863 p1864 p1865 p1866 p1867 p1868 p1869 p1870 p1871 p1872 
##   262   258    98   213   146   175    30    22   317   210    82   145 
## p1873 p1874 p1875 p1876 p1877 p1878 p1879 p1880 p1881 p1882 p1883 p1884 
##    87   178    88    20    52   145   255    67    22    24   102    26 
## p1885 p1886 p1887 p1888 p1889 p1890 p1891 p1892 p1893 p1894 p1895 p1896 
##    28    28    50    16   103    34    35    20   378   209    25    30 
## p1897 p1898 p1899 p1900 p1901 p1902 p1903 p1904 p1905 p1906 p1907 p1908 
##   205    26    36    11    46    19    28    83    27   173    65    22 
## p1909 p1910 p1911 p1912 p1913 p1914 p1915 p1916 p1917 p1918 p1919 p1920 
##   322  1123   241   335   656  1133   196    78  1702  1326   260   298 
## p1921 p1922 p1923 p1924 p1925 p1926 p1927 p1928 p1929 p1930 p1931 p1932 
##   489   459   207    57   173    98   221   164    33    75    93    35 
## p1933 p1934 p1935 p1936 p1937 p1938 p1939 p1940 p1941 p1942 p1943 p1944 
##    96    14    46   435   265  1325   201   601   601    32    22   125 
## p1945 p1946 p1947 p1948 p1949 p1950 p1951 p1952 p1953 p1954 p1955 p1956 
##    64    76    15   203   235   115    30    21    15    23   170   404 
## p1957 p1958 p1959 p1960 p1961 p1962 p1963 p1964 p1965 p1966 p1967 p1968 
##    56   159    16    45    36    33   292    38    48    21   175    32 
## p1969 p1970 p1971 p1972 p1973 p1974 p1975 p1976 p1977 p1978 p1979 p1980 
##   103   133    21   735    89    25    47    30    36    68   111   715 
## p1981 p1982 p1983 p1984 p1985 p1986 p1987 p1988 p1989 p1990 p1991 p1992 
##    60   112    22    74    34    51    37    69   132   370    74   202 
## p1993 p1994 p1995 p1996 p1997 p1998 p1999 p2000 p2001 p2002 p2003 p2004 
##   150   903   169   269   168    74    68    13   314   165    17    47 
## p2005 p2006 p2007 p2008 p2009 p2010 p2011 p2012 p2013 p2014 p2015 p2016 
##    19   195   261    56    75    53    56   215    27    37    37   117 
## p2017 p2018 p2019 p2020 p2021 p2022 p2023 p2024 p2025 p2026 p2027 p2028 
##    52    46    45    63    70    84    33   267    22    68   187    49 
## p2029 p2030 p2031 p2032 p2033 p2034 p2035 p2036 p2037 p2038 p2039 p2040 
##   171   118   109   256   166    68    70   289   348    95   292   123 
## p2041 p2042 p2043 p2044 p2045 p2046 p2047 p2048 p2049 p2050 p2051 p2052 
##    48   364   163    85    29   206   339   101   253    65    44    38 
## p2053 p2054 p2055 p2056 p2057 p2058 p2059 p2060 p2061 p2062 p2063 p2064 
##    49    11    44    27   240    12   155    13   154    29    78   220 
## p2065 p2066 p2067 p2068 p2069 p2070 p2071 p2072 p2073 p2074 p2075 p2076 
##    30   315    63   679    13    61   191   244    18    64    76    63 
## p2077 p2078 p2079 p2080 p2081 p2082 p2083 p2084 p2085 p2086 p2087 p2088 
##   185    66   189   114    93    99    54   262   109    68   406   256 
## p2089 p2090 p2091 p2092 p2093 p2094 p2095 p2096 p2097 p2098 p2099 p2100 
##   589   384   258   141   375   671   398   119   213   308   439   646 
## p2101 p2102 p2103 p2104 p2105 p2106 p2107 p2108 p2109 p2110 p2111 p2112 
##   408   240   330    32    23   226    42   618    87   170   767   101 
## p2113 p2114 p2115 p2116 p2117 p2118 p2119 p2120 p2121 p2122 p2123 p2124 
##   475    26    25   188    11   920   246    40    67   254    65   676 
## p2125 p2126 p2127 p2128 p2129 p2130 p2131 p2132 p2133 p2134 p2135 p2136 
##   869   139   104    44    25    36    19    42    20    73    53    37 
## p2137 p2138 p2139 p2140 p2141 p2142 p2143 p2144 p2145 p2146 p2147 p2148 
##    47    61    75    27   419   167    37   164   199    12    36    92 
## p2149 p2150 p2151 p2152 p2153 p2154 p2155 p2156 p2157 p2158 p2159 p2160 
##    33    93    34    37    56   102    13   289    81   174    29    24 
## p2161 p2162 p2163 p2164 p2165 p2166 p2167 p2168 p2169 p2170 p2171 p2172 
##   251   102   268   142    55   385    48    66   119  1074   295    15 
## p2173 p2174 p2175 p2176 p2177 p2178 p2179 p2180 p2181 p2182 p2183 p2184 
##    45    25    38    24    34    70    15    15    78    42    20    17 
## p2185 p2186 p2187 p2188 p2189 p2190 p2191 p2192 p2193 p2194 p2195 p2196 
##   115    14    49   147    84    21    45    47   186    36    35    33 
## p2197 p2198 p2199 p2200 p2201 p2202 p2203 p2204 p2205 p2206 p2207 p2208 
##    12    41    43    26    40    19    53    45    11    40   102    25 
## p2209 p2210 p2211 p2212 p2213 p2214 p2215 p2216 p2217 p2218 p2219 p2220 
##    44    16   610    68    68    49    29    34    51   125    25    30 
## p2221 p2222 p2223 p2224 p2225 p2226 p2227 p2228 p2229 p2230 p2231 p2232 
##    38    64    67    35    37    27    16    34   191    86    25    44 
## p2233 p2234 p2235 p2236 p2237 p2238 p2239 p2240 p2241 p2242 p2243 p2244 
##    76    19    38    63    15    11    17    67    16    19    97   184 
## p2245 p2246 p2247 p2248 p2249 p2250 p2251 p2252 p2253 p2254 p2255 p2256 
##    75    28    43   107    46    62    58    24    54    26    71    39 
## p2257 p2258 p2259 p2260 p2261 p2262 p2263 p2264 p2265 p2266 p2267 p2268 
##   117   204   253   166   223   135   137    16   133   116    68    34 
## p2269 p2270 p2271 p2272 p2273 p2274 p2275 p2276 p2277 p2278 p2279 p2280 
##   137    74   156   960  1402    20    21   362   158   639    26    55 
## p2281 p2282 p2283 p2284 p2285 p2286 p2287 p2288 p2289 p2290 p2291 p2292 
##    80   170   181   187   130    35    54    71    71    47    11   136 
## p2293 p2294 p2295 p2296 p2297 p2298 p2299 p2300 p2301 p2302 p2303 p2304 
##    28    69    23    22    17   128   189    19    64    43    49    52 
## p2305 p2306 p2307 p2308 p2309 p2310 p2311 p2312 p2313 p2314 p2315 p2316 
##    23    20   330   101   111    78   105   148    12    75   169   166 
## p2317 p2318 p2319 p2320 p2321 p2322 p2323 p2324 p2325 p2326 p2327 p2328 
##    49    32   160    81    60    32    19    31    72    41   105    12 
## p2329 p2330 p2331 p2332 p2333 p2334 p2335 p2336 p2337 p2338 p2339 p2340 
##    17    38    54    18    11    37   118    20    16    35    63    27 
## p2341 p2342 p2343 p2344 p2345 p2346 p2347 p2348 p2349 p2350 p2351 p2352 
##    64    14    29    41    23    76    70   105    23    17    87    13 
## p2353 p2354 p2355 p2356 p2357 p2358 p2359 p2360 p2361 p2362 p2363 p2364 
##    34    43    99    12    27    12   590   449   207    14    42   159 
## p2365 p2366 p2367 p2368 p2369 p2370 p2371 p2372 p2373 p2374 p2375 p2376 
##   239   306    74    57    52   157   163   238    61    91   220    52 
## p2377 p2378 p2379 p2380 p2381 p2382 p2383 p2384 p2385 p2386 p2387 p2388 
##    20    98    25    27    23    22    16    24    39    33    55    35 
## p2389 p2390 p2391 p2392 p2393 p2394 p2395 p2396 p2397 p2398 p2399 p2400 
##   134    18    37   170    30    36    45   272   143   365    14    15 
## p2401 p2402 p2403 p2404 p2405 p2406 p2407 p2408 p2409 p2410 p2411 p2412 
##    68    17    46    29    37    69    45   108    23    47   105   259 
## p2413 p2414 p2415 p2416 p2417 p2418 p2419 p2420 p2421 p2422 p2423 p2424 
##    89   168   106   150    77   262    64   131   381    56    28    52 
## p2425 p2426 p2427 p2428 p2429 p2430 p2431 p2432 p2433 p2434 p2435 p2436 
##    74    36    87    16    34    59    32    17    47    18   116    15 
## p2437 p2438 p2439 p2440 p2441 p2442 p2443 p2444 p2445 p2446 p2447 p2448 
##    41    34    61   120    29    38    16    54    46    22    47    17 
## p2449 p2450 p2451 p2452 p2453 p2454 p2455 p2456 p2457 p2458 p2459 p2460 
##    51    32   122   158    30    17   191   611    32   177   160    22 
## p2461 p2462 p2463 p2464 p2465 p2466 p2467 p2468 p2469 p2470 p2471 p2472 
##    54   113   141   284    53    16    59    24    14    12    11    27 
## p2473 p2474 p2475 p2476 p2477 p2478 p2479 p2480 p2481 p2482 p2483 p2484 
##   106    14    30    51   112    28    32    14    35    76    28    19 
## p2485 p2486 p2487 p2488 p2489 p2490 p2491 p2492 p2493 p2494 p2495 p2496 
##    20    33    13    15    58    26    44    44    39    35    70    85 
## p2497 p2498 p2499 p2500 p2501 p2502 p2503 p2504 p2505 p2506 p2507 p2508 
##    48    42   103    64    22    44    36    23    40    36    65    44 
## p2509 p2510 p2511 p2512 p2513 p2514 p2515 p2516 p2517 p2518 p2519 p2520 
##    15    24    37   135    41   203    19   109    42    19    13    14 
## p2521 p2522 p2523 p2524 p2525 p2526 p2527 p2528 p2529 p2530 p2531 p2532 
##    12    20    27    76   151    99    31    23    49    82    50    58 
## p2533 p2534 p2535 p2536 p2537 p2538 p2539 p2540 p2541 p2542 p2543 p2544 
##    42    54    19    13    27    12    11    23    50   103    11    47 
## p2545 p2546 p2547 p2548 p2549 p2550 p2551 p2552 p2553 p2554 p2555 p2556 
##    20   114    26    13    60    18    18    40    41    14    57    40 
## p2557 p2558 p2559 p2560 p2561 p2562 p2563 p2564 p2565 p2566 p2567 p2568 
##    16    30   105   220    74   191    29    13    16    13    26    31 
## p2569 p2570 p2571 p2572 p2573 p2574 p2575 p2576 p2577 p2578 p2579 p2580 
##    22    23    66    32    29    49    50    17    29    21    11    59 
## p2581 p2582 p2583 p2584 p2585 p2586 p2587 p2588 p2589 p2590 p2591 p2592 
##    36    12    13    28    12    14    19    11    50    23    17    28 
## p2593 p2594 p2595 p2596 p2597 p2598 p2599 p2600 p2601 p2602 p2603 p2604 
##    23    17    48    32    62    31    77    27    17    17    13   133 
## p2605 p2606 p2607 p2608 p2609 p2610 p2611 p2612 p2613 p2614 p2615 p2616 
##    12    30    26    88   122   107    21    40    19    28    19    24 
## p2617 p2618 p2619 p2620 p2621 p2622 p2623 p2624 p2625 p2626 p2627 p2628 
##    19    50    21   140    94    15    27    41    40    79    18   155 
## p2629 p2630 p2631 p2632 p2633 p2634 p2635 p2636 p2637 p2638 p2639 p2640 
##   144    75    38   169    55    13    81    17    57    71    27    12 
## p2641 p2642 p2643 p2644 p2645 p2646 p2647 p2648 p2649 p2650 p2651 p2652 
##    34    40    15    18    23    80    70    67    27    11    29    50 
## p2653 p2654 p2655 p2656 p2657 p2658 p2659 p2660 p2661 p2662 p2663 p2664 
##    55    34    38    67    11    64    69    94    99   115    84    44 
## p2665 p2666 p2667 p2668 p2669 p2670 p2671 p2672 p2673 p2674 p2675 p2676 
##    40    15    20    29    25    47   281    24    96    27    48   170 
## p2677 p2678 p2679 p2680 p2681 p2682 p2683 p2684 p2685 p2686 p2687 p2688 
##    19    45    28    15    43   145    37    86    41    30    75   409 
## p2689 p2690 p2691 p2692 p2693 p2694 p2695 p2696 p2697 p2698 p2699 p2700 
##    28    71    62   168   102   218   212   214    61   135   292    19 
## p2701 p2702 p2703 p2704 p2705 p2706 p2707 p2708 p2709 p2710 p2711 p2712 
##    49    54   138    44    77    91    28   166   289    67    90    63 
## p2713 p2714 p2715 p2716 p2717 p2718 p2719 p2720 p2721 p2722 p2723 p2724 
##    26    64   186    68    24    65    47    87   260    44    97    37 
## p2725 p2726 p2727 p2728 p2729 p2730 p2731 p2732 p2733 p2734 p2735 p2736 
##    43   166   155    27    28    15   191    67    41    77    33   105 
## p2737 p2738 p2739 p2740 p2741 p2742 p2743 p2744 p2745 p2746 p2747 p2748 
##   215    28    15    38    78  1519    11    46    12    15    14    51 
## p2749 p2750 p2751 p2752 p2753 p2754 p2755 p2756 p2757 p2758 p2759 p2760 
##    72   262    37    36    90   125    30    49    91   112    84   136 
## p2761 p2762 p2763 p2764 p2765 p2766 p2767 p2768 p2769 p2770 p2771 p2772 
##   104    23    26    24    11   141   137    74    20    11    75   366 
## p2773 p2774 p2775 p2776 p2777 p2778 p2779 p2780 p2781 p2782 p2783 p2784 
##    83    31    35    13    27    53    53    22   144    36    38   112 
## p2785 p2786 p2787 p2788 p2789 p2790 p2791 p2792 p2793 p2794 p2795 p2796 
##    30    23   116    62    46   212    18   246    60    28    48    93 
## p2797 p2798 p2799 p2800 p2801 p2802 p2803 p2804 p2805 p2806 p2807 p2808 
##    32    32    45    35    79    56    32    22    46    47    16    45 
## p2809 p2810 p2811 p2812 p2813 p2814 p2815 p2816 p2817 p2818 p2819 p2820 
##    41    16    54    29   133   112    92    42    20    51   156    20 
## p2821 p2822 p2823 p2824 p2825 p2826 p2827 p2828 p2829 p2830 p2831 p2832 
##   167    22   495    17    23    94    69    13    53    48   116    19 
## p2833 p2834 p2835 p2836 p2837 p2838 p2839 p2840 p2841 p2842 p2843 p2844 
##    35    34    40    61    22   146    72    78    60    77   211    66 
## p2845 p2846 p2847 p2848 p2849 p2850 p2851 p2852 p2853 p2854 p2855 p2856 
##   126   157    14    21    49    94    17   136    68   490    85   294 
## p2857 p2858 p2859 p2860 p2861 p2862 p2863 p2864 p2865 p2866 p2867 p2868 
##   504   219   207    93   250   186   316   263   383   633    15   235 
## p2869 p2870 p2871 p2872 p2873 p2874 p2875 p2876 p2877 p2878 p2879 p2880 
##    52   213    14    18    32    50    28   146   149    86    60    56 
## p2881 p2882 p2883 p2884 p2885 p2886 p2887 p2888 p2889 p2890 p2891 p2892 
##    55   117    23   209   114    19    23    63    44   120   120    51 
## p2893 p2894 p2895 p2896 p2897 p2898 p2899 p2900 p2901 p2902 p2903 p2904 
##    14    90    71    40    17    23   168    66   115    22    51   361 
## p2905 p2906 p2907 p2908 p2909 p2910 p2911 p2912 p2913 p2914 p2915 p2916 
##    78    13    89    39    30    30    90    66    93    33   241    47 
## p2917 p2918 p2919 p2920 p2921 p2922 p2923 p2924 p2925 p2926 p2927 p2928 
##   119    68    38    73    26    17    78    56    57   196    45   135 
## p2929 p2930 p2931 p2932 p2933 p2934 p2935 p2936 p2937 p2938 p2939 p2940 
##   110   180   152   147   243    55   169   303   507   234    59    98 
## p2941 p2942 p2943 p2944 p2945 p2946 p2947 p2948 p2949 p2950 p2951 p2952 
##    16    36    72    50   116   164    83    29    77    41   253    86 
## p2953 p2954 p2955 p2956 p2957 p2958 p2959 p2960 p2961 p2962 p2963 p2964 
##    84    74   676   197  1381    33    23   112   125    72    71    16 
## p2965 p2966 p2967 p2968 p2969 p2970 p2971 p2972 p2973 p2974 p2975 p2976 
##    68    29    12    49    96   116    13    20    11    36    19    13 
## p2977 p2978 p2979 p2980 p2981 p2982 p2983 p2984 p2985 p2986 p2987 p2988 
##    21    12    15   288   415    34    28    44    12   111    41   111 
## p2989 p2990 p2991 p2992 p2993 p2994 p2995 p2996 p2997 p2998 p2999 p3000 
##    61   246    32    11    13    96    60    11    39    42    51    25 
## p3001 p3002 p3003 p3004 p3005 p3006 p3007 p3008 p3009 p3010 p3011 p3012 
##    18    13    46    16   237    17   566    40    11    78    53    52 
## p3013 p3014 p3015 p3016 p3017 p3018 p3019 p3020 p3021 p3022 p3023 p3024 
##   105    35    37    77    97    81   291   177    38    19    33    32 
## p3025 p3026 p3027 p3028 p3029 p3030 p3031 p3032 p3033 p3034 p3035 p3036 
##    34   138   530    49    26    37    74    83   245    26    31    21 
## p3037 p3038 p3039 p3040 p3041 p3042 p3043 p3044 p3045 p3046 p3047 p3048 
##   116    20    18    70    48    69    38    45    82    61    12    46 
## p3049 p3050 p3051 p3052 p3053 p3054 p3055 p3056 p3057 p3058 p3059 p3060 
##    11    39    25    14    58    57    76    35   329    69    33    62 
## p3061 p3062 p3063 p3064 p3065 p3066 p3067 p3068 p3069 p3070 p3071 p3072 
##    22    17    83    59   106    20   138    11   233    24    11   253 
## p3073 p3074 p3075 p3076 p3077 p3078 p3079 p3080 p3081 p3082 p3083 p3084 
##    30   295   202   326   103    25   136    41   371   128    39    13 
## p3085 p3086 p3087 p3088 p3089 p3090 p3091 p3092 p3093 p3094 p3095 p3096 
##   104   178    67   742    67    19    14    46    95    17    49   194 
## p3097 p3098 p3099 p3100 p3101 p3102 p3103 p3104 p3105 p3106 p3107 p3108 
##    14    78    60    47    48    85   472    13    30    83    79    46 
## p3109 p3110 p3111 p3112 p3113 p3114 p3115 p3116 p3117 p3118 p3119 p3120 
##    11    45    17    28    45    43    63    57    38    28    29    35 
## p3121 p3122 p3123 p3124 p3125 p3126 p3127 p3128 p3129 p3130 p3131 p3132 
##    30    25    11    57    14    42    47    11    20   105   376   182 
## p3133 p3134 p3135 p3136 p3137 p3138 p3139 p3140 p3141 p3142 p3143 p3144 
##   220    17   148   234    14    12    36    35   107    25   131   118 
## p3145 p3146 p3147 p3148 p3149 p3150 p3151 p3152 p3153 p3154 p3155 p3156 
##    14    11    13    25    16    14    18   107   124    24    32   338 
## p3157 p3158 p3159 p3160 p3161 p3162 p3163 p3164 p3165 p3166 p3167 p3168 
##    24    19    12    90    16    14    31   201    26    22    55    90 
## p3169 p3170 p3171 p3172 p3173 p3174 p3175 p3176 p3177 p3178 p3179 p3180 
##    52    56    48    56    28    77    19    47    71   105   383    27 
## p3181 p3182 p3183 p3184 p3185 p3186 p3187 p3188 p3189 p3190 p3191 p3192 
##    38    54    19    42    21    27    35    38    47    54   121    66 
## p3193 p3194 p3195 p3196 p3197 p3198 p3199 p3200 p3201 p3202 p3203 p3204 
##   116   285    13    93   996    48   653   115   145   655    14    94 
## p3205 p3206 p3207 p3208 p3209 p3210 p3211 p3212 p3213 p3214 p3215 p3216 
##    27    20    28    21   133    39    41    61    43    69    45   134 
## p3217 p3218 p3219 p3220 p3221 p3222 p3223 p3224 p3225 p3226 p3227 p3228 
##    20    55   825    11    16    50   376   122   719    13   227    30 
## p3229 p3230 p3231 p3232 p3233 p3234 p3235 p3236 p3237 p3238 p3239 p3240 
##   501    15    11    39    13    16    22    16    27    23    14    22 
## p3241 p3242 p3243 p3244 p3245 p3246 p3247 p3248 p3249 p3250 p3251 p3252 
##    21    14    17    39    11    16    23    41    40    17    20    28 
## p3253 p3254 p3255 p3256 p3257 p3258 p3259 p3260 p3261 p3262 p3263 p3264 
##    98    14    68    89    28    41    15    13   100   108    18   158 
## p3265 p3266 p3267 p3268 p3269 p3270 p3271 p3272 p3273 p3274 p3275 p3276 
##    33    46    41    12   201    90   614   616   473    23    85    74 
## p3277 p3278 p3279 p3280 p3281 p3282 p3283 p3284 p3285 p3286 p3287 p3288 
##    37    36    60   144    54    31    13    62    47    74    12    19 
## p3289 p3290 p3291 p3292 p3293 p3294 p3295 p3296 p3297 p3298 p3299 p3300 
##    15    17    29    35    39    23   162    52   248    25    59    77 
## p3301 p3302 p3303 p3304 p3305 p3306 p3307 p3308 p3309 p3310 p3311 p3312 
##    29    18    87   101    69    39    21   302   471    13    35    24 
## p3313 p3314 p3315 p3316 p3317 p3318 p3319 p3320 p3321 p3322 p3323 p3324 
##    14    15    28    43    53   175    64    39    14    39    14    16 
## p3325 p3326 p3327 p3328 p3329 p3330 p3331 p3332 p3333 p3334 p3335 p3336 
##    73   101   458    43    19    24    21    26    32   157    27   363 
## p3337 p3338 p3339 p3340 p3341 p3342 p3343 p3344 p3345 p3346 p3347 p3348 
##    20   977    21    20    11   290    88    53    88    14    69   117 
## p3349 p3350 p3351 p3352 p3353 p3354 p3355 p3356 p3357 p3358 p3359 p3360 
##    84    39   120   134   111   169   265   173    31    76   190    67 
## p3361 p3362 p3363 p3364 p3365 p3366 p3367 p3368 p3369 p3370 p3371 p3372 
##    60    90    46    69   109   214    59    38   515   635   170   400 
## p3373 p3374 p3375 p3376 p3377 p3378 p3379 p3380 p3381 p3382 p3383 p3384 
##   140    26   192   150   143    84   112    15    23    43   114   109 
## p3385 p3386 p3387 p3388 p3389 p3390 p3391 p3392 p3393 p3394 p3395 p3396 
##    27    33   202    27   105   141    58    44    84   207    50   206 
## p3397 p3398 p3399 p3400 p3401 p3402 p3403 p3404 p3405 p3406 p3407 p3408 
##    16   277   193   286    24    14    13    29   120   297    56    41 
## p3409 p3410 p3411 p3412 p3413 p3414 p3415 p3416 p3417 p3418 p3419 p3420 
##    31   119    35   147    70    14   119    34   175   153    52    20 
## p3421 p3422 p3423 p3424 p3425 p3426 p3427 p3428 p3429 p3430 p3431 p3432 
##    17    21    21    32    17    16    41   255    71    37    66   128 
## p3433 p3434 p3435 p3436 p3437 p3438 p3439 p3440 p3441 p3442 p3443 p3444 
##   128    38   135   102    53    34    34   112    80    73    44    27 
## p3445 p3446 p3447 p3448 p3449 p3450 p3451 p3452 p3453 p3454 p3455 p3456 
##    19    26    32    46    15    98    66    95    28    26    13    29 
## p3457 p3458 p3459 p3460 p3461 p3462 p3463 p3464 p3465 p3466 p3467 p3468 
##    65    19    33    38    15    50    20    86    15    19   121   198 
## p3469 p3470 p3471 p3472 p3473 p3474 p3475 p3476 p3477 p3478 p3479 p3480 
##    68   103   119    26    53    31    53    28   143    21   104    86 
## p3481 p3482 p3483 p3484 p3485 p3486 p3487 p3488 p3489 p3490 p3491 p3492 
##    57   181   153   412   101   111   181   119    30    19    67    53 
## p3493 p3494 p3495 p3496 p3497 p3498 p3499 p3500 p3501 p3502 p3503 p3504 
##    34    18    52    30    28    11   254    44    11    12    31    86 
## p3505 p3506 p3507 p3508 p3509 p3510 p3511 p3512 p3513 p3514 p3515 p3516 
##    32    14   101    32   112    32    94    26   106    31    75    65 
## p3517 p3518 p3519 p3520 p3521 p3522 p3523 p3524 p3525 p3526 p3527 p3528 
##    29   149    30   155   290    23    20    17    35    57    64    33 
## p3529 p3530 p3531 p3532 p3533 p3534 p3535 p3536 p3537 p3538 p3539 p3540 
##    15    73    90    67    61    71   112   106    38    19   111    15 
## p3541 p3542 p3543 p3544 p3545 p3546 p3547 p3548 p3549 p3550 p3551 p3552 
##    42    15   139    63    42    38    75    71    18    38    30    93 
## p3553 p3554 p3555 p3556 p3557 p3558 p3559 p3560 p3561 p3562 p3563 p3564 
##    27    21   109    25    41    25    50    18    17    19    78    20 
## p3565 p3566 p3567 p3568 p3569 p3570 p3571 p3572 p3573 p3574 p3575 p3576 
##    13    29    46    27    24    66    23    30    33    18    62    29 
## p3577 p3578 p3579 p3580 p3581 p3582 p3583 p3584 p3585 p3586 p3587 p3588 
##    17    55    19    24    14    60    60    82    18    15    17    14 
## p3589 p3590 p3591 p3592 p3593 p3594 p3595 p3596 p3597 p3598 p3599 p3600 
##    25   140    51    51    25    49    46   118    20    23   150   236 
## p3601 p3602 p3603 p3604 p3605 p3606 p3607 p3608 p3609 p3610 p3611 p3612 
##    27    44    22    58    39    80    21    54   134    38   101    50 
## p3613 p3614 p3615 p3616 p3617 p3618 p3619 p3620 p3621 p3622 p3623 p3624 
##    57   115    96    36   120   123    83    36    39   108   143    66 
## p3625 p3626 p3627 p3628 p3629 p3630 p3631 p3632 p3633 p3634 p3635 p3636 
##    45    13   189    76    36   153   170    17    14    27    41    47 
## p3637 p3638 p3639 p3640 p3641 p3642 p3643 p3644 p3645 p3646 p3647 p3648 
##   160   115    73    95    63    45    26    70   157   211   144   133 
## p3649 p3650 p3651 p3652 p3653 p3654 p3655 p3656 p3657 p3658 p3659 p3660 
##   651    40   101    72    29   221   878    19   574    41    47   181 
## p3661 p3662 p3663 p3664 p3665 p3666 p3667 p3668 p3669 p3670 p3671 p3672 
##   106    36    28   112   504    23    43   102   137   142    14    81 
## p3673 p3674 p3675 p3676 p3677 p3678 p3679 p3680 p3681 p3682 p3683 p3684 
##    63    16   108    61    51    12   109    15    48    35    21    45 
## p3685 p3686 p3687 p3688 p3689 p3690 p3691 p3692 p3693 p3694 p3695 p3696 
##    29    48    16    22    13    34    16    66    80    30    24    16 
## p3697 p3698 p3699 p3700 p3701 p3702 p3703 p3704 p3705 p3706 p3707 p3708 
##   165    53    31    46    31    33   179    75    70    52    16   182 
## p3709 p3710 p3711 p3712 p3713 p3714 p3715 p3716 p3717 p3718 p3719 p3720 
##   196    57   230    47   254   276    59   277    75    18   135    50 
## p3721 p3722 p3723 p3724 p3725 p3726 p3727 p3728 p3729 p3730 p3731 p3732 
##    13    57    22    22   366    70    33    12    13    37    27    17 
## p3733 p3734 p3735 p3736 p3737 p3738 p3739 p3740 p3741 p3742 p3743 p3744 
##    35    39   122    40    45   135    53    16    20    25    39    17 
## p3745 p3746 p3747 p3748 p3749 p3750 p3751 p3752 p3753 p3754 p3755 p3756 
##    32    23    23   295    90    45   650   202   111    28   294    14 
## p3757 p3758 p3759 p3760 p3761 p3762 p3763 p3764 p3765 p3766 p3767 p3768 
##    96    98    36   174   179    32   299    11   217    25   198    11 
## p3769 p3770 p3771 p3772 p3773 p3774 p3775 p3776 p3777 p3778 p3779 p3780 
##   243    13   137   137    19  1824    16    32    23    20    21    92 
## p3781 p3782 p3783 p3784 p3785 p3786 p3787 p3788 p3789 p3790 p3791 p3792 
##    20    12   208    30    46    20    22    23   118    32    24   266 
## p3793 p3794 p3795 p3796 p3797 p3798 p3799 p3800 p3801 p3802 p3803 p3804 
##    12    15    31    49    24    25    55    81   137   116    94    92 
## p3805 p3806 p3807 p3808 p3809 p3810 p3811 p3812 p3813 p3814 p3815 p3816 
##    39    19    28    18    41    14    14   110    19    27    32    50 
## p3817 p3818 p3819 p3820 p3821 p3822 p3823 p3824 p3825 p3826 p3827 p3828 
##   105    12    47    16    33    88    12    25    93    11    16    54 
## p3829 p3830 p3831 p3832 p3833 p3834 p3835 p3836 p3837 p3838 p3839 p3840 
##    19    62    12   129    16    16    57    33    31    88    44    74 
## p3841 p3842 p3843 p3844 p3845 p3846 p3847 p3848 p3849 p3850 p3851 p3852 
##    83   302   159   126    38    50    50    86    23   183    30    89 
## p3853 p3854 p3855 p3856 p3857 p3858 p3859 p3860 p3861 p3862 p3863 p3864 
##    33    12    28   524    19   147    59    63    75    46    31    36 
## p3865 p3866 p3867 p3868 p3869 p3870 p3871 p3872 p3873 p3874 p3875 p3876 
##    35    28    43    38    71    50   103    17   155    76   141   105 
## p3877 p3878 p3879 p3880 p3881 p3882 p3883 p3884 p3885 p3886 p3887 p3888 
##    63    11    69    26    21    49    75    98   146    55   124   101 
## p3889 p3890 p3891 p3892 p3893 p3894 p3895 p3896 p3897 p3898 p3899 p3900 
##    70    30    50    56    93    23    93   124    73    29    42    77 
## p3901 p3902 p3903 p3904 p3905 p3906 p3907 p3908 p3909 p3910 p3911 p3912 
##    22    89    80    22   112    14   109    91    27    42    60    83 
## p3913 p3914 p3915 p3916 p3917 p3918 p3919 p3920 p3921 p3922 p3923 p3924 
##    49    14    23    30    44   205    39   154    33   331    81   122 
## p3925 p3926 p3927 p3928 p3929 p3930 p3931 p3932 p3933 p3934 p3935 p3936 
##   282    63    61   368   169   124    57    17   172    31    34    28 
## p3937 p3938 p3939 p3940 p3941 p3942 p3943 p3944 p3945 p3946 p3947 p3948 
##    41    11    21    34    48    49   103    55    35    76    33    11 
## p3949 p3950 p3951 p3952 p3953 p3954 p3955 p3956 p3957 p3958 p3959 p3960 
##    37    90    27    18    31    23    14    59    34    45    47    23 
## p3961 p3962 p3963 p3964 p3965 p3966 p3967 p3968 p3969 p3970 p3971 p3972 
##    24    18    16    58    28    35   151    17    94    91    40    36 
## p3973 p3974 p3975 p3976 p3977 p3978 p3979 p3980 p3981 p3982 p3983 p3984 
##    60   214   147    75   109   109    22   279    31   127    16    46 
## p3985 p3986 p3987 p3988 p3989 p3990 p3991 p3992 p3993 p3994 p3995 p3996 
##    51    39   373    51    41    56    29   190    99   221   445    42 
## p3997 p3998 p3999 p4000 p4001 p4002 p4003 p4004 p4005 p4006 p4007 p4008 
##   841   247   153   188   131   114    32    16    11    45    38   233 
## p4009 p4010 p4011 p4012 p4013 p4014 p4015 p4016 p4017 p4018 p4019 p4020 
##    35    55    71   157   230    16    80    37    57   143    16   138 
## p4021 p4022 p4023 p4024 p4025 p4026 p4027 p4028 p4029 p4030 p4031 p4032 
##    39    18    38    34    37    68   156    29    72    51    19    36 
## p4033 p4034 p4035 p4036 p4037 p4038 p4039 p4040 p4041 p4042 p4043 p4044 
##    62   127    41    77    43    49    80    40    50    27   141    55 
## p4045 p4046 p4047 p4048 p4049 p4050 p4051 p4052 p4053 p4054 p4055 p4056 
##    57    28    86    54    22   191    88    27    70   106   109    57 
## p4057 p4058 p4059 p4060 p4061 p4062 p4063 p4064 p4065 p4066 p4067 p4068 
##    79   171    30    82    12   120   128    11    48    87    48    99 
## p4069 p4070 p4071 p4072 p4073 p4074 p4075 p4076 p4077 p4078 p4079 p4080 
##   243    68    34    32   164    46    53    16    69    78    94    81 
## p4081 p4082 p4083 p4084 p4085 p4086 p4087 p4088 p4089 p4090 p4091 p4092 
##    50   145    37   205   141   170    65   533  1598   413   816    41 
## p4093 p4094 p4095 p4096 p4097 p4098 p4099 p4100 p4101 p4102 p4103 p4104 
##   528  1148   262   322    35   103    76   156    14    54    75    49 
## p4105 p4106 p4107 p4108 p4109 p4110 p4111 p4112 p4113 p4114 p4115 p4116 
##    14    45   102    32    60   108   113    22    92    38    16    27 
## p4117 p4118 p4119 p4120 p4121 p4122 p4123 p4124 p4125 p4126 p4127 p4128 
##    99    96    39   130    22    33    48    72    76    69    20    11 
## p4129 p4130 p4131 p4132 p4133 p4134 p4135 p4136 p4137 p4138 p4139 p4140 
##    20    15    12    13    23    13    27    14    11    19    11    14 
## p4141 p4142 p4143 p4144 p4145 p4146 p4147 p4148 p4149 p4150 p4151 p4152 
##    11    14    45    29    17    24    19    15    16    33    13    17 
## p4153 p4154 p4155 p4156 p4157 p4158 p4159 p4160 p4161 p4162 p4163 p4164 
##    15    11    13    12    16    14    11    11    14    16    13    11 
## p4165 p4166 p4167 p4168 p4169 p4170 p4171 p4172 p4173 p4174 p4175 p4176 
##    18    19    15    11    29    14    15    12    35    21    14    20 
## p4177 p4178 p4179 p4180 p4181 p4182 p4183 p4184 p4185 p4186 p4187 p4188 
##    12    25    18    18    13    15    13    14    12    19    12    13 
## p4189 p4190 p4191 p4192 p4193 p4194 p4195 p4196 p4197 p4198 p4199 p4200 
##    11    34    12    19    13    27    30    14    33    11    16    12 
## p4201 p4202 p4203 p4204 p4205 p4206 p4207 p4208 p4209 p4210 p4211 p4212 
##    11    28    21    20    24    13    11    20    33    12    27    22 
## p4213 p4214 p4215 p4216 p4217 p4218 p4219 p4220 p4221 p4222 p4223 p4224 
##    13    18    14    11    13    27    14    17    17    33    22    19 
## p4225 p4226 p4227 p4228 p4229 p4230 p4231 p4232 p4233 p4234 p4235 p4236 
##    14    14    16    14    20    11    13    23    11    37    14    21 
## p4237 p4238 p4239 p4240 p4241 p4242 p4243 p4244 p4245 p4246 p4247 p4248 
##    19    12    20    18    15    36    19    14    28    16    25    44 
## p4249 p4250 p4251 p4252 p4253 p4254 p4255 p4256 p4257 p4258 p4259 p4260 
##    19    16    17    14    18    12    44    22    13    22    17    12 
## p4261 p4262 p4263 p4264 p4265 p4266 p4267 p4268 p4269 p4270 p4271 p4272 
##    12    13    13    31    32    28    17    12    18    30    18    30 
## p4273 p4274 p4275 p4276 p4277 p4278 p4279 p4280 p4281 p4282 p4283 p4284 
##    17    12    25    15    32    13    32   106    13    14    29    14 
## p4285 p4286 p4287 p4288 p4289 p4290 p4291 p4292 p4293 p4294 p4295 p4296 
##    28    23    19    13    21    36    14    15    17    23    24    11 
## p4297 p4298 p4299 p4300 p4301 p4302 p4303 p4304 p4305 p4306 p4307 p4308 
##    19    15    24    17    11    13    25    27    39    18    17    29 
## p4309 p4310 p4311 p4312 p4313 p4314 p4315 p4316 p4317 p4318 p4319 p4320 
##    11    29    11    15    11    11    13    21    31    12    12    33 
## p4321 p4322 p4323 p4324 p4325 p4326 p4327 p4328 p4329 p4330 p4331 p4332 
##    16    15    15    15    47    12    11    36    20    13    20    12 
## p4333 p4334 p4335 p4336 p4337 p4338 p4339 p4340 p4341 p4342 p4343 p4344 
##    35    20    26    79    12    30    15    19    29    20    11    11 
## p4345 p4346 p4347 p4348 p4349 p4350 p4351 p4352 p4353 p4354 p4355 p4356 
##    11    16    18    11    13    24    11    11    12    15    25    15 
## p4357 p4358 p4359 p4360 p4361 p4362 p4363 p4364 p4365 p4366 p4367 p4368 
##    14    34    13    11    11    18    15    19    14    21    21    23 
## p4369 p4370 p4371 p4372 p4373 p4374 p4375 p4376 p4377 p4378 p4379 p4380 
##    60    12    18    17    16    13    12    38    31    13    18    13 
## p4381 p4382 p4383 p4384 p4385 p4386 p4387 p4388 p4389 p4390 p4391 p4392 
##    32    17    14    26    21    20    30    18    13    11    17    12 
## p4393 p4394 p4395 p4396 p4397 p4398 p4399 p4400 p4401 p4402 p4403 p4404 
##    20    14    23    23    12    26    55    28    12    27    57    16 
## p4405 p4406 p4407 p4408 p4409 p4410 p4411 p4412 p4413 p4414 p4415 p4416 
##    14    27    16    23    18    27    23    20    31    22    29    13 
## p4417 p4418 p4419 p4420 p4421 p4422 p4423 p4424 p4425 p4426 p4427 p4428 
##    14    14    20    23    14    17    20    12    25    16    11    13 
## p4429 p4430 p4431 p4432 p4433 p4434 p4435 p4436 p4437 p4438 p4439 p4440 
##    12    17    15    12    18    15    16    12    13    11    12    17 
## p4441 p4442 p4443 p4444 p4445 p4446 p4447 p4448 p4449 p4450 p4451 p4452 
##    19    13    11    13    11    11    12    16    23    18    35    13 
## p4453 p4454 p4455 p4456 p4457 p4458 p4459 p4460 p4461 p4462 p4463 p4464 
##    14    18    11    19    17    14    11    17    11    22    13    11 
## p4465 p4466 p4467 p4468 p4469 p4470 p4471 p4472 p4473 p4474 p4475 p4476 
##    13    19    12    14    19    41    17    11    23    11    13    33 
## p4477 p4478 p4479 p4480 p4481 p4482 p4483 p4484 p4485 p4486 p4487 p4488 
##    24    54    11    16    13    16    11    19    13    20    15    16 
## p4489 p4490 p4491 p4492 p4493 p4494 p4495 p4496 p4497 p4498 p4499 p4500 
##    12    13    11    22    15    13    11    18    13    11    46    13 
## p4501 p4502 p4503 p4504 p4505 p4506 p4507 p4508 p4509 p4510 p4511 p4512 
##    24    15    21    14    20    51    16    17    15    14    11    21 
## p4513 p4514 p4515 p4516 p4517 p4518 p4519 p4520 p4521 p4522 p4523 p4524 
##    22    17    12    14    16    16    29    34    12    19    11    14 
## p4525 p4526 p4527 p4528 p4529 p4530 p4531 p4532 p4533 p4534 p4535 p4536 
##    13    28    13    15    13    11    13    11    14    38    37    12 
## p4537 p4538 p4539 p4540 p4541 p4542 p4543 p4544 p4545 p4546 p4547 p4548 
##    42    44    22    12    30    14    20    29    20    17    11    19

we can see the variability in plots as below;

Plot of transactions per salesperson:

barplot(totS,
        main='Transactions per salesperson',
        names.arg='',xlab='Salespeople',
        ylab='Amount')

Plot of transactions per product:

barplot(totP,
        main='Transactions per product',
        names.arg='',xlab='Products',
        ylab='Amount')

Variables Quant and Val show a lot of variability also, indicating differences in the products, thus, they might be better handled separately.

If prices of the products are very different it may only be possible to identify abnormal transactions in the context of the same product.

However, given the disparate quantity of products that are sold on each transaction,it might make more sense to carry out this analysis over the unit price instead.

We add this derived unit price per transaction as a new column to the dataframe

sales$Uprice <- sales$Val/sales$Quant

Unit price should be relatively constant over the transactions of the same product.

When analyzing transactions over a short period of time, one does not expect strong variations of the unit price of the products.

We check the distribution of the unit price:

sales$Uprice <- sales$Val/sales$Quant

Unit price should be relatively constant over the transactions of the same product.When analyzing transactions over a short period of time, one does not expect strong variations of the unit price of the products.

We check the distribution of the unit price:

summary(sales$Uprice)
##     Min.  1st Qu.   Median     Mean  3rd Qu.     Max.     NA's 
##     0.00     8.46    11.89    20.30    19.11 26460.00    14136

We again observed a marked variability.

Given this observation, we should analyze the set of transactions on each product individually, looking for suspicious transactions on each of these sets.

One problem is that some products have very few transactions. Of the 4,548 products,982 have fewer than 20 transactions.

Declaring a report as unusual based on a sample of fewer than 20 reports may be too risky.

Attaching the varable sales as below

attach(sales)

We obtain median unit price of each product.

upp <- aggregate(Uprice,list(Prod),median,na.rm=T)

Let’s take a look at upp, just the first ten

upp[1:10,]
##    Group.1         x
## 1       p1 11.428571
## 2       p2 10.877863
## 3       p3 10.000000
## 4       p4  9.911243
## 5       p5 11.000000
## 6       p6 13.270677
## 7       p7  4.851453
## 8       p8  3.850211
## 9       p9  1.941457
## 10     p10 42.232846

We generate five most (and least) expensive product lsiting

topP <- sapply(c(T,F),function(o) 
               upp[order(upp[,2],
                         decreasing=o)[1:5],1])
colnames(topP) <- c('Expensive','Cheap')
topP
##      Expensive Cheap  
## [1,] "p3689"   "p560" 
## [2,] "p2453"   "p559" 
## [3,] "p2452"   "p4195"
## [4,] "p2456"   "p601" 
## [5,] "p2459"   "p563"

We confirm the completely different price distribution of the top products using a boxplot of their unit price

tops <- sales[Prod %in% topP[1,],
              c('Prod','Uprice')]
head(tops)
##        Prod       Uprice
## 2382   p560 1.454210e-02
## 30006 p3689 2.069307e+01
## 30007 p3689 2.116790e+04
## 30008 p3689 2.267961e+02
## 36164  p560 1.454210e-02
## 69854 p3689 1.221728e+04
tops$Prod <- factor(tops$Prod)

The scales of the prices of the most expensive and least expensive products are rather different.So we use a log scale to keep the values of the cheap product from being indistinguishable.Y-axis is on log scale.

boxplot(Uprice ~ Prod,data=tops,
        ylab='Uprice',log="y")

We carry out a similar analysis to discover which salespeople are ones who bring more (less) money into the company.

vs <- aggregate(Val,list(ID),sum,na.rm=T)
scoresSs <- sapply(c(T,F),function(o) 
                   vs[order(vs$x,decreasing=o)[1:5],1])
colnames(scoresSs) <- c('Most','Least')
scoresSs
##      Most    Least  
## [1,] "v431"  "v3355"
## [2,] "v54"   "v6069"
## [3,] "v19"   "v5876"
## [4,] "v4520" "v6058"
## [5,] "v955"  "v4515"

The top 100 salespeople account for almost 40% of the company income, while the bottom 2,000 (of 6,016 salespeople) generate less than 2% of the income:

Percent of company income top 100 salespeople:

sum(vs[order(vs$x,decreasing=T)[1:100],2])/sum(Val,na.rm=T)*100
## [1] 38.33277

Percent of company income bottom 2,000:

sum(vs[order(vs$x,decreasing=F)[1:2000],2])/sum(Val,na.rm=T)*100
## [1] 1.988716

If we carry out a similar analysis in terms of the quantity that is sold for each product, the results are even more unbalanced:

qs <- aggregate(Quant,list(Prod),sum,na.rm=T)
scoresPs <- sapply(c(T,F),function(o) 
                   qs[order(qs$x,decreasing=o)[1:5],1])
colnames(scoresPs) <- c('Most','Least')
scoresPs
##      Most    Least  
## [1,] "p2516" "p2442"
## [2,] "p3599" "p2443"
## [3,] "p314"  "p1653"
## [4,] "p569"  "p4101"
## [5,] "p319"  "p3678"

Top 100 products represent nearly 75% of sales volume:

sum(as.double(qs[order(qs$x,decreasing=T)[1:100],2]))/sum(as.double(Quant),na.rm=T)*100
## [1] 74.63478

4,000 of the 4,548 products account for less than 10% of the sales volume:

sum(as.double(qs[order(qs$x,decreasing=F)[1:4000],2]))/sum(as.double(Quant),na.rm=T)*100
## [1] 8.944681

Sales people can change the price of an item if they want, but we still assume that the unit price of any product should follow a near-normal distribution.

We can conduct some basic tests to find deviations from this normality assumption:

The Box-Plot Rule: Box-plots show outliers. The rule is that an observation should be tagged as an anomaly, a high (low) value if it is above (below) the high (low) whisker which is defined as Q3+(1.5 x IQR) for high and Q1-(1.5 x IQR) for the low values, where Q1 is the first quartile, Q3 is the third quartile, and IQR=(Q3-Q1) and is the inter-quartile range.

This ā€˜Box-Plot’ Rule works well for normally- distributed variables, and is robust to the presence of a few outliers since it is based in robust statistics using quartiles.

We determine the number of outliers (by above definition) of each product:

out <- tapply(Uprice,list(Prod=Prod),
              function(x) length(boxplot.stats(x)$out))

The products with more outliers are:

out[order(out,decreasing=T)[1:10]]
## Prod
## p1125 p1437 p2273 p1917 p1918 p4089  p538 p3774 p2742 p3338 
##   376   181   165   156   156   137   129   125   120   117

We see that 29,446 transactions are outliers:

sum(out)
## [1] 29446

which is approximately 7% of total transactions:

sum(out)/nrow(sales)*100
## [1] 7.34047

Data problems

Unknown (Missing) Values

3 basic alternatives: 1) Remove them; 2) Fill them in with some strategy; or 3) Use tools that can handle them.

The salespersons and products involved in the problematic transactions with unknowns in both Val and Quant are :

nas <- sales[which(is.na(Quant) & is.na(Val)),
             c('ID','Prod')]
nrow(nas)
## [1] 888

it appears that the option of removing all transactions with unknown values on both quantity and value is the best option.

detach(sales)
sales <- sales[-which(is.na(sales$Quant) & is.na(sales$Val)),]

Calculate proportion of transactions of each product that have quantity unknown and delete them and update the levels

nnasQp <- tapply(sales$Quant,list(sales$Prod),
                 function(x) sum(is.na(x)))
propNAsQp <- nnasQp/table(sales$Prod)
propNAsQp[order(propNAsQp,decreasing=T)[1:10]]
##     p2442     p2443     p1653     p4101     p4243      p903     p3678 
## 1.0000000 1.0000000 0.9090909 0.8571429 0.6842105 0.6666667 0.6666667 
##     p3955     p4464     p1261 
## 0.6428571 0.6363636 0.6333333
sales <- sales[!sales$Prod %in% c('p2442','p2443'),]
nlevels(sales$Prod)
## [1] 4548
sales$Prod <- factor(sales$Prod)
nlevels(sales$Prod)
## [1] 4546

Are there salespeople with all transactions that have an unknown quantity?:

nnasQs <- tapply(sales$Quant,list(sales$ID),function(x) sum(is.na(x)))
propNAsQs <- nnasQs/table(sales$ID)
propNAsQs[order(propNAsQs,decreasing=T)[1:10]]
##     v2925     v5537     v5836     v6058     v6065     v4368     v2923 
## 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 0.8888889 0.8750000 
##     v2970     v4910     v4542 
## 0.8571429 0.8333333 0.8095238

We carry out a similar analysis for transactions with an unknown value in Val. First, proportion of transactions of each product with unknown value in this column:

nnasVp <- tapply(sales$Val,list(sales$Prod),
                 function(x) sum(is.na(x)))
propNAsVp <- nnasVp/table(sales$Prod)
propNAsVp[order(propNAsVp,decreasing=T)[1:10]]
##      p1110      p1022      p4491      p1462        p80      p4307 
## 0.25000000 0.17647059 0.10000000 0.07500000 0.06250000 0.05882353 
##      p4471      p2821      p1017      p4287 
## 0.05882353 0.05389222 0.05263158 0.05263158

We begin by obtaining this typical unit price for each product. We skip prices of transactions already deemed to be fraudulent. For remaining (non-fraud) transactions we use median unit price of the transactions as the ā€˜typical’ unit price:

tPrice <- tapply(sales[sales$Insp != 'fraud','Uprice'],
                 list(sales[sales$Insp != 'fraud',
                            'Prod']),median,na.rm=T)
nrow(tPrice)
## [1] 4546

We fill in remaining missing values for Quantity and Value

noQuant <- which(is.na(sales$Quant))
sales[noQuant,'Quant'] <- ceiling(sales[noQuant,'Val'] /
                                  tPrice[sales[noQuant,'Prod']])
noVal <- which(is.na(sales$Val))
sales[noVal,'Val'] <- sales[noVal,'Quant'] *
                      tPrice[sales[noVal,'Prod']]

We have filled in Quant and Val values so now we recalculate the Uprice column to fill in the previously unknown unit prices:

sales$Uprice <- sales$Val/sales$Quant

Defining the Data Mining Tasks

We want to decide which transaction reports should be considered for inspection as result of strong suspicion of being fraudulent.We want the guidance to take the form of a ranking of fraud probability.

ā€˜Insp’ column has info about previous inspections.Have small number that have been judged, are ā€˜OK’ or ā€˜Fraud’

Have another large number that have not been inspected, they are marked ā€˜unkn’.

These represent two different groups for our purposes; there are different modeling approaches that can be applied to either group.

We might compare their unit price with the typical price of the reports of the same product. We would expect a higher difference to be an indication that something is wrong.

So we can use this difference, or ā€˜distance’, as a good indicator of the quality of the outlier ranking obtained by the model.

Here is a function the calculates the value of this statistic:

avgNDTP <- function(toInsp,train,stats) {
  if (missing(train) && missing(stats)) 
    stop('Provide either the training data or the product stats')
    if (missing(stats)) {
      notF <- which(train$Insp != 'fraud')
        stats <- tapply(train$Uprice[notF],
                    list(Prod=train$Prod[notF]),
                    function(x) {
                      bp <- boxplot.stats(x)$stats
                      c(median=bp[3],
                        iqr=bp[4]-bp[2])
                    })
    stats <- matrix(unlist(stats),
                    length(stats),2,byrow=T,
                    dimnames=list(names(stats),
                                  c('median',
                                    'iqr')))
       stats[which(stats[,'iqr']==0),'iqr'] <- 
      stats[which(stats[,'iqr']==0),'median']
  }
  
  mdtp <- mean(abs(toInsp$Uprice-stats[toInsp$Prod,'median']) /
                 stats[toInsp$Prod,'iqr'])
  return(mdtp)
}

Must provide test set, ranking proposed by the model for this set, threshold of inspection limit effort and stats (median and IQR) of products. We use this function soon

evalOutlierRanking <- function(testSet,
                               rankOrder,
                               Threshold,
                               statsProds) {
    ordTS <- testSet[rankOrder,]
    N <- nrow(testSet)
  nF <- if (Threshold < 1) as.integer(Threshold*N) else Threshold
  cm <- table(c(rep('fraud',nF),
                rep('ok',N-nF)),
              ordTS$Insp)
    prec <- cm['fraud','fraud']/sum(cm['fraud',])
  rec <- cm['fraud','fraud']/sum(cm[,'fraud'])
  AVGndtp <- avgNDTP(ordTS[nF,],
                     stats=statsProds)
  return(c(Precision=prec,Recall=rec,
           avgNDTP=AVGndtp))
}

OBTAINING OUTLIER RANKINGS

We use different models to obtain outlier rankings.For each attempt we will estimate its results using a stratified 70%/30% hold-out strategy.

UNSUPERVISED APPROACHES

The modified box plot rule

We described the box plot rule, which can be used to detect outliers of a continuous variable if it follows a near-normal distribution like with the unit price of the products. In this context, we can think of this simple rule as the baseline method that we can apply to our data.

This function receives a set of transactions and obtains their ranking order and score. Parameters are the training and test data sets:

BPrule <- function(train,test) {
  # leave out those already labeled 'fraud':
  notF <- which(train$Insp != 'fraud')
  # calculates median and IQR values per product:
  ms <- tapply(train$Uprice[notF],list(Prod=train$Prod[notF]),
               function(x) {
                 bp <- boxplot.stats(x)$stats
                 c(median=bp[3],iqr=bp[4]-bp[2])
               })
  ms <- matrix(unlist(ms),length(ms),2,byrow=T,
               dimnames=list(names(ms),c('median','iqr')))
  ms[which(ms[,'iqr']==0),'iqr'] <- ms[which(ms[,'iqr']==0),'median']
  # then uses this stats to obtain outlier score:
  ORscore <- abs(test$Uprice-ms[test$Prod,'median']) /
    ms[test$Prod,'iqr']
  # then returns a list with this score and the
  # rank order of the test set observations:
  return(list(rankOrder=order(ORscore,decreasing=T),
              rankScore=ORscore))
}

Now we evaluate this method using hold-out experimental methodology and calculate alues of median and IQR for each product required to calculate average NDTP score

notF <- which(sales$Insp != 'fraud')
globalStats <- tapply(sales$Uprice[notF],
                      list(Prod=sales$Prod[notF]),
                      function(x) {
                        bp <- boxplot.stats(x)$stats
                        c(median=bp[3],iqr=bp[4]-bp[2])
                      })
globalStats <- matrix(unlist(globalStats),
                      length(globalStats),2,byrow=T,
                      dimnames=list(names(globalStats),
                                    c('median','iqr')))
globalStats[which(globalStats[,'iqr']==0),'iqr'] <- 
  globalStats[which(globalStats[,'iqr']==0),'median']

The holdOut() function needs to call a routine to obtain and evaluate the BPrule method for each iteration of the experimental process as below

ho.BPrule <- function(form, train, test, ...) {
  res <- BPrule(train,test)
  # we attach other R objects to the attributes to the
  # vector of scores with the BPrule method, it is a
  # list that contains the predicted and true values
  # that originated these scores:
  structure(evalOutlierRanking(test,res$rankOrder,...),
            # create object with attribute itInfo:
            itInfo=list(preds=res$rankScore,
                        trues=ifelse(test$Insp=='fraud',1,0)
            )
  )
}

bp.res <- holdOut(learner('ho.BPrule',
                          pars=list(Threshold=0.1,
                                    statsProds=globalStats)),
                  dataset(Insp ~ .,sales),
                  # args are number of reps,
                  # percentage of cases included in
                  # hold out sample, set.seed() value, and
                  # T means stratified sampling should
                  # be used:
                  hldSettings(3,0.3,1234,T),
                  # makes storage take place (see way above):
                  itsInfo=TRUE
)
## 
##  Stratified  3 x 70 %/ 30 % Holdout run with seed =  1234 
## Repetition  1
## Repetition  2
## Repetition  3
summary(bp.res)
## 
## == Summary of a Hold Out Experiment ==
## 
##  Stratified  3 x 70 %/ 30 % Holdout run with seed =  1234 
## 
## * Data set ::  sales
## * Learner  ::  ho.BPrule  with parameters:
##   Threshold  =  0.1  
##   statsProds  =  11.34  ...  
## 
## * Summary of Experiment Results:
##            Precision     Recall    avgNDTP
## avg     0.0166305736 0.52293272 1.87123901
## std     0.0008983669 0.01909992 0.05379945
## min     0.0159920040 0.51181102 1.80971393
## max     0.0176578377 0.54498715 1.90944329
## invalid 0.0000000000 0.00000000 0.00000000

To obtain the PR and cumulative recall charts

par(mfrow=c(1,2))
info <- attr(bp.res,'itsInfo')
PTs.bp <- aperm(array(unlist(info),
                      dim=c(length(info[[1]]),2,3)),
                c(1,3,2)
)
PRcurve(PTs.bp[,,1],PTs.bp[,,2],
        main='PR curve',avg='vertical')
CRchart(PTs.bp[,,1],PTs.bp[,,2],
        main='Cumulative Recall curve',
        avg='vertical')

We see in cumulative recall chart that method obtains around 40% of recall with a very low inspective effort….to achieve values around 80%, we need to inspect 25%-30% of the reports.

Local outlier factors (LOF)

main idea of LOF system is to obtain an ā€œoutlyingnessā€score for each case by estimating its degree of isolation with respect to its local neighborhood.

Method is based on notion of local density of the observations. Cases in regions with very low density are considered outliers. The estimates of the density are obtained using the distances between cases. The authors defined a few concepts that drive algorithm to calculate ā€œoutlyingnessā€.score of each point. They are:

concept of core distance of a point p,which is defined as its distance to its nearest neighbor, (2) concept of reachability distance between case p1 and p2, which is given by the maximum of the core distance of p1 and the dis- tance between both cases, and (3) local reachability distance of a point which is inversely proportional to the average reachability distance of its k neighbors. The LOF of a case is calculated as a function of its local reachability distance.

DMwR package implementation of LOF algorithm: this function obtains evaluation statistics from applying LOF method to given training and test set. We merged train and test datasets and use LOF to rank this full set of reports. From the obtained ranking we then select the outlier scores of the cases belonging to the test set.

ho.LOF <- function(form, train, test, k, ...) {
  require(dprep,quietly=T)
  ntr <- nrow(train)
  all <- rbind(train,test)
  N <- nrow(all)
  ups <- split(all$Uprice,all$Prod)
  r <- list(length=ups)
    for(u in seq(along=ups)) 
    r[[u]] <- if (NROW(ups[[u]]) > 3) 
    lofactor(ups[[u]],min(k,NROW(ups[[u]]) %/% 2)) 
  else if (NROW(ups[[u]])) rep(0,NROW(ups[[u]])) 
  else NULL
  all$lof <- vector(length=N)
  split(all$lof,all$Prod) <- r
  all$lof[which(!(is.infinite(all$lof) | is.nan(all$lof)))] <- 
  SoftMax(all$lof[which(!(is.infinite(all$lof) | is.nan(all$lof)))])
  structure(evalOutlierRanking(test,order(all[(ntr+1):N,'lof'],
                                          decreasing=T),...),
                   itInfo=list(preds=all[(ntr+1):N,'lof'],
                        trues=ifelse(test$Insp=='fraud',1,0))
  )
}
lof.res <- holdOut(learner('ho.LOF',
                           # set k = 7, might tune with more experiments
                           pars=list(k=7,Threshold=0.1,
                                     statsProds=globalStats)),
                   dataset(Insp ~ .,sales),
                   hldSettings(3,0.3,1234,T),
                   itsInfo=TRUE
)
## 
##  Stratified  3 x 70 %/ 30 % Holdout run with seed =  1234 
## Repetition  1
## Warning in library(package, lib.loc = lib.loc, character.only = TRUE,
## logical.return = TRUE, : there is no package called 'dprep'
## 
## Repetition  2
## Warning in library(package, lib.loc = lib.loc, character.only = TRUE,
## logical.return = TRUE, : there is no package called 'dprep'
## 
## Repetition  3
## Warning in library(package, lib.loc = lib.loc, character.only = TRUE,
## logical.return = TRUE, : there is no package called 'dprep'
summary(lof.res)
## 
## == Summary of a Hold Out Experiment ==
## 
##  Stratified  3 x 70 %/ 30 % Holdout run with seed =  1234 
## 
## * Data set ::  sales
## * Learner  ::  ho.LOF  with parameters:
##   k  =  7  
##   Threshold  =  0.1  
##   statsProds  =  11.34  ...  
## 
## * Summary of Experiment Results:
##            Precision     Recall   avgNDTP
## avg     0.0221278250 0.69595344 2.4631856
## std     0.0009136811 0.02019331 0.9750265
## min     0.0214059637 0.67454068 1.4420851
## max     0.0231550891 0.71465296 3.3844572
## invalid 0.0000000000 0.00000000 0.0000000

precision and Recall plot for LOF method is below

par(mfrow=c(1,2))
info <- attr(lof.res,'itsInfo')
PTs.lof <- aperm(array(unlist(info),
                       dim=c(length(info[[1]]),2,3)),
                 c(1,3,2)
)
PRcurve(PTs.bp[,,1],PTs.bp[,,2],
        main='PR curve',lty=1,
        xlim=c(0,1),ylim=c(0,1),
        avg='vertical')
PRcurve(PTs.lof[,,1],PTs.lof[,,2],
        add=T,lty=2,
        avg='vertical')
legend('topright',c('BPrule','LOF'),
       lty=c(1,2))
CRchart(PTs.bp[,,1],PTs.bp[,,2],
        main='Cumulative Recall curve',
        lty=1,xlim=c(0,1),ylim=c(0,1),
        avg='vertical')
CRchart(PTs.lof[,,1],PTs.lof[,,2],
        add=T,lty=2,
        avg='vertical')
legend('bottomright',c('BPrule','LOF'),
       lty=c(1,2))

Clustering-based outlier rankings (OR_h)

The next outlier ranking method we consider is based on a clustering algorithm. The OR_h method uses a hierarchical agglomerative clustering algorithm to obtain a dendrogram of the given data.Dendrograms are visual representations of the merging process of these clustering methods.

ho.ORh <- function(form, train, test, ...) {
   require(dprep,quietly=T)
  ntr <- nrow(train)
  all <- rbind(train,test)
  N <- nrow(all)
  ups <- split(all$Uprice,all$Prod)
  r <- list(length=ups)
  for(u in seq(along=ups)) 
    r[[u]] <- if (NROW(ups[[u]]) > 3) 
      outliers.ranking(ups[[u]])$prob.outliers 
  else if (NROW(ups[[u]])) rep(0,NROW(ups[[u]])) 
  else NULL
  all$lof <- vector(length=N)
  split(all$lof,all$Prod) <- r
    all$lof[which(!(is.infinite(all$lof) | is.nan(all$lof)))] <- 
    SoftMax(all$lof[which(!(is.infinite(all$lof) | is.nan(all$lof)))])
  structure(evalOutlierRanking(test,order(all[(ntr+1):N,'lof'],
                                          decreasing=T),...),
            itInfo=list(preds=all[(ntr+1):N,'lof'],
                        trues=ifelse(test$Insp=='fraud',1,0))
  )
}

orh.res <- holdOut(learner('ho.ORh',
                           pars=list(Threshold=0.1,
                                     statsProds=globalStats)),
                   dataset(Insp ~ .,sales),
                   hldSettings(3,0.3,1234,T),
                   itsInfo=TRUE
)
## 
##  Stratified  3 x 70 %/ 30 % Holdout run with seed =  1234 
## Repetition  1
## Warning in library(package, lib.loc = lib.loc, character.only = TRUE,
## logical.return = TRUE, : there is no package called 'dprep'
## 
## Repetition  2
## Warning in library(package, lib.loc = lib.loc, character.only = TRUE,
## logical.return = TRUE, : there is no package called 'dprep'
## 
## Repetition  3
## Warning in library(package, lib.loc = lib.loc, character.only = TRUE,
## logical.return = TRUE, : there is no package called 'dprep'
summary(orh.res)
## 
## == Summary of a Hold Out Experiment ==
## 
##  Stratified  3 x 70 %/ 30 % Holdout run with seed =  1234 
## 
## * Data set ::  sales
## * Learner  ::  ho.ORh  with parameters:
##   Threshold  =  0.1  
##   statsProds  =  11.34  ...  
## 
## * Summary of Experiment Results:
##            Precision     Recall   avgNDTP
## avg     0.0220445333 0.69345072 0.5444893
## std     0.0005545834 0.01187721 0.3712311
## min     0.0215725471 0.67979003 0.2893128
## max     0.0226553390 0.70133333 0.9703665
## invalid 0.0000000000 0.00000000 0.0000000

The precision and Recall graph is below

par(mfrow=c(1,2))
info <- attr(orh.res,'itsInfo')
PTs.orh <- aperm(array(unlist(info),dim=c(length(info[[1]]),2,3)),
                 c(1,3,2)
)
PRcurve(PTs.bp[,,1],PTs.bp[,,2],
        main='PR curve',lty=1,xlim=c(0,1),ylim=c(0,1),
        avg='vertical')
PRcurve(PTs.lof[,,1],PTs.lof[,,2],
        add=T,lty=2,
        avg='vertical')
PRcurve(PTs.orh[,,1],PTs.orh[,,2],
        add=T,lty=1,col='grey',
        avg='vertical')        
legend('topright',c('BPrule','LOF','ORh'),
       lty=c(1,2,1),col=c('black','black','grey'))
CRchart(PTs.bp[,,1],PTs.bp[,,2],
        main='Cumulative Recall curve',lty=1,xlim=c(0,1),ylim=c(0,1),
        avg='vertical')
CRchart(PTs.lof[,,1],PTs.lof[,,2],
        add=T,lty=2,
        avg='vertical')
CRchart(PTs.orh[,,1],PTs.orh[,,2],
        add=T,lty=1,col='grey',
        avg='vertical')
legend('bottomright',c('BPrule','LOF','ORh'),
       lty=c(1,2,1),col=c('black','black','grey'))

the results of the OR_h method are comparable to LOF in terms of the cumulative recall curve. However, regarding the PR curve, the OR_h system dominates the score of LOF, with a smaller advantage over BPrule.

SUPERVISED APPROACHES

Naive Bayes

Naive Bayes is a probabilistic classifier based on the Bayes theorem that uses strong assumptions on the independence between the predictors.

nb <- function(train,test) {
  require(e1071,quietly=T)
  sup <- which(train$Insp != 'unkn')
  data <- train[sup,c('ID','Prod','Uprice','Insp')]
  data$Insp <- factor(data$Insp,levels=c('ok','fraud'))
  model <- naiveBayes(Insp ~ .,data)
  preds <- predict(model,test[,c('ID','Prod','Uprice','Insp')],type='raw')
  return(list(rankOrder=order(preds[,'fraud'],decreasing=T),
              rankScore=preds[,'fraud'])
  )
}
ho.nb <- function(form, train, test, ...) {
  res <- nb(train,test)
  structure(evalOutlierRanking(test,res$rankOrder,...),
            itInfo=list(preds=res$rankScore,
                        trues=ifelse(test$Insp=='fraud',1,0)
            )
  )
}
nb.res <- holdOut(learner('ho.nb',
                          pars=list(Threshold=0.1,
                                    statsProds=globalStats)),
                  dataset(Insp ~ .,sales),
                  hldSettings(3,0.3,1234,T),
                  itsInfo=TRUE
)
## 
##  Stratified  3 x 70 %/ 30 % Holdout run with seed =  1234 
## Repetition  1
## Warning: package 'e1071' was built under R version 3.0.3
## 
## Repetition  2
## Repetition  3
summary(nb.res)
## 
## == Summary of a Hold Out Experiment ==
## 
##  Stratified  3 x 70 %/ 30 % Holdout run with seed =  1234 
## 
## * Data set ::  sales
## * Learner  ::  ho.nb  with parameters:
##   Threshold  =  0.1  
##   statsProds  =  11.34  ...  
## 
## * Summary of Experiment Results:
##           Precision     Recall   avgNDTP
## avg     0.013715365 0.43112103 0.8519657
## std     0.001083859 0.02613164 0.2406771
## min     0.012660336 0.40533333 0.5908980
## max     0.014825920 0.45758355 1.0650114
## invalid 0.000000000 0.00000000 0.0000000

Precision and Recall plot

par(mfrow=c(1,2))
info <- attr(nb.res,'itsInfo')
PTs.nb <- aperm(array(unlist(info),dim=c(length(info[[1]]),2,3)),
                c(1,3,2)
)

PRcurve(PTs.nb[,,1],PTs.nb[,,2],
        main='PR curve',lty=1,xlim=c(0,1),
        ylim=c(0,1), avg='vertical')
PRcurve(PTs.orh[,,1],PTs.orh[,,2],
        add=T,lty=1,col='grey',
        avg='vertical')        
legend('topright',c('NaiveBayes','ORh'),
       lty=1,col=c('black','grey'))

CRchart(PTs.nb[,,1],PTs.nb[,,2],
        main='Cumulative Recall curve',
        lty=1,xlim=c(0,1),ylim=c(0,1),
        avg='vertical')
CRchart(PTs.orh[,,1],PTs.orh[,,2],
        add=T,lty=1,col='grey',
        avg='vertical')        
legend('bottomright',c('NaiveBayes','ORh'),
       lty=1,col=c('black','grey'))

A possible cause for the poor performance of the Naive Bayes may be the class imbalance. So now we will apply the Naive Bayes classifier using a training set obtained using SMOTE().

nb.s <- function(train,test) {
  require(e1071,quietly=T)
  sup <- which(train$Insp != 'unkn')
  data <- train[sup,c('ID','Prod','Uprice','Insp')]
  data$Insp <- factor(data$Insp,levels=c('ok','fraud'))
  newData <- SMOTE(Insp ~ .,data,perc.over=700)
  model <- naiveBayes(Insp ~ .,newData)
  preds <- predict(model,test[,c('ID','Prod','Uprice','Insp')],type='raw')
  return(list(rankOrder=order(preds[,'fraud'],decreasing=T),
              rankScore=preds[,'fraud'])
  )
}
ho.nbs <- function(form, train, test, ...) {
  res <- nb.s(train,test)
  structure(evalOutlierRanking(test,res$rankOrder,...),
            itInfo=list(preds=res$rankScore,
                        trues=ifelse(test$Insp=='fraud',1,0)
            )
  )
}
nbs.res <- holdOut(learner('ho.nbs',
                           pars=list(Threshold=0.1,
                                     statsProds=globalStats)),
                   dataset(Insp ~ .,sales),
                   hldSettings(3,0.3,1234,T),
                   itsInfo=TRUE
)
## 
##  Stratified  3 x 70 %/ 30 % Holdout run with seed =  1234 
## Repetition  1
## Repetition  2
## Repetition  3
summary(nbs.res)
## 
## == Summary of a Hold Out Experiment ==
## 
##  Stratified  3 x 70 %/ 30 % Holdout run with seed =  1234 
## 
## * Data set ::  sales
## * Learner  ::  ho.nbs  with parameters:
##   Threshold  =  0.1  
##   statsProds  =  11.34  ...  
## 
## * Summary of Experiment Results:
##           Precision     Recall   avgNDTP
## avg     0.014215115 0.44686510 0.8913330
## std     0.001109167 0.02710388 0.8482740
## min     0.013493253 0.43044619 0.1934613
## max     0.015492254 0.47814910 1.8354999
## invalid 0.000000000 0.00000000 0.0000000
par(mfrow=c(1,2))
info <- attr(nbs.res,'itsInfo')
PTs.nbs <- aperm(array(unlist(info),
                       dim=c(length(info[[1]]),
                             2,3)),c(1,3,2))
PRcurve(PTs.nb[,,1],PTs.nb[,,2],
        main='PR curve',lty=1,xlim=c(0,1),
        ylim=c(0,1),
        avg='vertical')
PRcurve(PTs.nbs[,,1],PTs.nbs[,,2],
        add=T,lty=2,
        avg='vertical')
PRcurve(PTs.orh[,,1],PTs.orh[,,2],
        add=T,lty=1,col='grey',
        avg='vertical')        
legend('topright',c('NaiveBayes',
                    'smoteNaiveBayes','ORh'),
       lty=c(1,2,1),col=c('black','black','grey'))
CRchart(PTs.nb[,,1],PTs.nb[,,2],
        main='Cumulative Recall curve',
        lty=1,xlim=c(0,1),ylim=c(0,1),
        avg='vertical')
CRchart(PTs.nbs[,,1],PTs.nbs[,,2],
        add=T,lty=2,
        avg='vertical')
CRchart(PTs.orh[,,1],PTs.orh[,,2],
        add=T,lty=1,col='grey',
        avg='vertical')        
legend('bottomright',c('NaiveBayes','smoteNaiveBayes','ORh'),
       lty=c(1,2,1),col=c('black','black','grey'))

We see the disappointing results of the SMOTE’d version of Naive Bayes. In effect, it shows the same poor results as the standard Naive Bayes when compared to OR_h and, moreover, its performance is almost always surpassed by the standard version.