WHR = read.csv("data/2016.csv")

Introduction

The 2016 World Happiness Report is the fourth of its kind and consists of data obtained from the Gallup World Poll, containing data from thousands of participants across over 160 countries. The report allows for a globally recognised quantifiable measure of happiness and through analysing this data we can derive a unique outlook on the international perception of happiness within a range of diverse populations.

Variable Classification:

Country: Qualitative Nominal Multivariate

Region: Qualitative Nominal Multivariate

Happiness Rank: Qualitative Discrete

Happiness Score: Qualitative Continuous

Lower Confidence Interval: Qualitative Continuous

Upper Confidence Interval: Qualitative Continuous

Economy (GDP per Capita): Qualitative Continuous

Family: Qualitative Continuous

Health (Life expectancy): Qualitative Continuous

Freedom: Qualitative Continuous

Trust (Government Corruption): Qualitative Continuous

Generosity: Qualitative Continuous

Dystopia residual: Qualitative Continuous

Research Questions

1. What does this data say about the extensiveness of global inequality between countries?

2. Is there a trend in the inequality between regions?

3. Which of the six accompanying factors (economy (GDP per Capita), family, health, freedom, trust (Government Corruption), generosity) have the highest correlation to happiness? Account for this trend.

4. Was the data able to measure “Happiness” in an effective manner?

5. How useful is the data in practical applications?

What does this data say about the extensiveness of global inequality between countries?

The data exhibits that there is a vast inequality in the measurement of “Happiness” across the 156 countries which were surveyed. By calculating the population standard deviation of the data, it becomes evident that the happiness scores are quite spread out since its at a high 1.138008. Thus, reflecting the large gaps or inequality between each country that they represent. This extensiveness of inequality is further supported by the box plot below which contain outliers, since the lowest country has a mean happiness score rating of 2.905 whilst the highest had 7.526. The range difference of 4.621 is almost half of the maximum 10 difference that can be attained on the Cantrell Ladder.

sd(WHR$Happiness.Score) * sqrt((155)/156)
## [1] 1.138008
range(WHR$Happiness.Score)
## [1] 2.905 7.526
boxplot(WHR$Happiness.Score, horizontal = TRUE, xlab = "Happiness Score")

The conclusion that there is high inequality between the countries is supported by data from the Maddison Project, a scholarly group which aims to measure the economic performance of different regions through time periods and subtopics, on the large gap between the richest and poorest countries . In accordance with this data since the 1960’s there has been a 135% increase in the wealth gap between 135% which may have a significant impact on the quality of life and therefore, levels of happiness.

Is there a trend in the inequality between regions?

Several noticeable trends exist across the 10 regions categorised in the data. The region of Sub-Saharan Africa, for example has the lowest mean happiness score at 4.14 and for which its countries occupy 17 of the bottom 20 ranks for comparative happiness. This trend follows that of recorded GDP per capita with a regional median of 0.39 as opposed to the international median of 1.0. The clear economic issues present in the region show a strong correlative trend with the relative unhappiness recorded by its citizens.

In contrast the region of Western Europe occupies 7 out of the top 10 ranks for comparative global happiness and boasts a mean happiness score for 6.69 across the region. Additionally this is paired with a a regional median GDP of 1.43, well above the 1.0 global average. This positive trend reflects the negative trend seen in the data from the region of Sub-Saharan Africa and provides statistical evidence to support a strong correlation between relative economic prosperity and perceived happiness.

The bar plot below exhibits the inequality in mean happiness scores across five of the most represented regions in the data. The clear difference in the Sub-Saharan Africa region and that of Western Europe is indicative of the opposing trends identified above.

Hscore_NA = mean(WHR$Happiness.Score[WHR$Region == "North America"])
Hscore_SEA = mean(WHR$Happiness.Score[WHR$Region == "Southeastern Asia"])
Hscore_SA = mean(WHR$Happiness.Score[WHR$Region == "Southern Asia"])
Hscore_ANZ = mean(WHR$Happiness.Score[WHR$Region == "Australia and New Zealand"])
Hscore_EA = mean(WHR$Happiness.Score[WHR$Region == "Eastern Asia"])
Hscore_WE = mean(WHR$Happiness.Score[WHR$Region == "Western Europe"])
Hscore_MENA = mean(WHR$Happiness.Score[WHR$Region == "Middle East and Northern Africa"])
Hscore_SSA = mean(WHR$Happiness.Score[WHR$Region == "Sub-Saharan Africa"])
Hscore_CEE = mean(WHR$Happiness.Score[WHR$Region == "Central and Eastern Europe"])
Hscore_LAC = mean(WHR$Happiness.Score[WHR$Region == "Latin America and Caribbean"])
revec = c(Hscore_LAC, Hscore_CEE, Hscore_MENA, Hscore_SSA, Hscore_WE)
barplot(revec, main = "Mean Happiness Score of 5 Largest Regions", ylab = "Happiness Score", xlab = "Region",col = c("lightblue", "lightgreen", "yellow", "red", "purple"), legend = c("Latin America and Caribbean", "Central and Eastern Europe", "Middle East and Northern Africa", "Sub-Saharan Africa", "Western Europe"), ylim = c(0,8), xlim = c(0,7), width = 0.5,)

3. Which of the six accompanying factors (economy (GDP per Capita), family, health, freedom, trust (Government Corruption), generosity) have the highest correlation to happiness? Account for this high correlation.

cor(WHR$Happiness.Score, WHR$Economy..GDP.per.Capita.)
## [1] 0.790322
cor(WHR$Happiness.Score, WHR$Family)
## [1] 0.7392516
cor(WHR$Happiness.Score, WHR$Health..Life.Expectancy.)
## [1] 0.7653843
cor(WHR$Happiness.Score, WHR$Freedom)
## [1] 0.5668267
cor(WHR$Happiness.Score, WHR$Trust..Government.Corruption.)
## [1] 0.4020322
cor(WHR$Happiness.Score, WHR$Generosity)
## [1] 0.1568478
plot(WHR$Economy..GDP.per.Capita., WHR$Happiness.Score, ylab = "Happiness", xlab = "Economy (GDP per Capita)", main = "The Relationship between Happiness & Economy")
L = lm(WHR$Happiness.Score ~ WHR$Economy..GDP.per.Capita.)
abline(L)

plot(WHR$Family, WHR$Happiness.Score, ylab = "Happiness", xlab = "Family", main = "The relationship between Happiness and Family")
O = lm(WHR$Happiness.Score ~ WHR$Family)
abline(O)

plot(WHR$Health..Life.Expectancy., WHR$Happiness.Score, ylab = "Happiness", xlab = "Health", main = "The relationship between Happiness and Health")
Z = lm(WHR$Happiness.Score ~ WHR$Health..Life.Expectancy.)
abline(Z)

Economy = 0.79032

Family = 0.73925

health = 0.76538

Freedom = 0.56683

Trust = 0.40203

Generosity = 0.15685

4. How was the data measured? Was the data able to measure “Happiness” in an effective manner?

One can argue several limitations on how “Happiness” was measured. For one, the sample size of 1000-2000 people sampled per year per country is incredibly small in comparison to the hundreds of thousands if not millions of people who are in the actual population. This brings into question the statistical significance and accuracy of the data in representing conclusions or trends about the population. Thus one can argue, that the data being measured isn’t entirely effective since it doesn’t portray an accurate image. However, the data maintains accuracy by maintaining a 95% accurate confidence interval to ensure that the population mean is included in the data. This is evident in their calculation of the Happiness Score as the mean between the upper and lower confidence interval.

Another area of contention in the effectivity of how data was measured is the use of the Cantrell scale due to its high subjectivity. It asks the individual to rate their life on a ladder from “1” (being the “Worst” point of their life) to 10 “(being the “best life they’ve lived)”. In measuring happiness, there were no clear parameters on what “Happiness” entailed or did not entail since they were based on an individuals own perception. This creates a discrepancy as to whether the same variable of “Happiness” was actually measured across the different individuals and between different countries. This discrepancy may weaken the validity of the conclusions which can be founded upon analyzing this data. Thus it can be argued, that “Happiness” was not effectively measured. This argument similarly applies to vague nature in which “Family”, “Health”, “Freedom”, “Trust” and “Generosity” were recorded on the data set.

Overall however, this difficulty in accurately measuring “Happiness” as a consistent across different groups of people is a further reflection of the difficulty in capturing highly subjective constructs.

5. How useful is the data in practical applications?

The World Happiness Report 2016 aims to encourage and catalyse the conception of numerous national policies that could benefit from data compiled by statistical indicators, such as “happiness”, “health” and “freedom”. Due to the vague nature of some of the indicators, there is doubt on whether the measurements (happiness, health, freedom) provide insight that adequately determines the amendment or creation of any national policy. For example, the measurement of “health” singularly refers to the life expectancy of a given population. However, there is no consideration given to the statistics surrounding disease, cancer, chronic physical conditions and mental health, all of which are extremely significant to an individual’s quality of life.

The findings of the report, though surveyed with good intentions and supported by numerous altruistic organisations, are extremely volatile as the data is subject to the individual societal and governmental characteristics of each country. The results provide good statistical insights and reviews into various “happiness” related statistics, and this can be helpful in identifying societal issues and raising awareness to specific national obstacles. However, there is currently limited evidence to suggest that the results alone have provided practical solutions to the issues highlighted.

It is imperative to understand that the reports are relatively new. Positive feedback, constructive criticism and worldwide discussions from various international bodies suggest that the survey methods and reports are continuously evolving with each release. Therefore, there is potential for more concrete, practical applications in the future.

Source Analysis

Although the data set used was obtained from Kaggle.com, an online platform where data scientists and statisticians post datasets and compete to analyse, the original data was published in the World Happiness Report. Since data sets from Kaggle.com is widely used and scrutinised by statisticians, this increases the credibility of the data since any obvious errors would have been identified and highlighted in the discussions section.

Furthermore, the data’s original publication in the World Happiness is supported by renowned and credible international organisations such as the United Nations, the Sustainable Development Solutions Network and the Global Happiness Council. Consequently, it can be inferred that the data must have gone through numerous checks before being published thus further increasing the credibility and reliability of the data.

The report cites that the raw data used was sourced from the Gallup World Poll. This 100-question poll studies approximately 1000-2000 individuals for each of the 160+ countries it surveys each year, using the exact same questions each year. Although one can argue that this sample size is small in comparison to the actual enormity of the population of each country, Gallup attempts to increase its accuracy and statistical significance by weighting its samples against unequal selection probability to minimise the margin of error. Thus, increasing the accuracy of the data.

However, the Gallup Poll uses the Cantrell Ladder to measure happiness which creates some issues. The Cantrell Ladder of measurement is highly subjective as it asks you about life contentment on a scale of “1” to “10”, with 1 being “the worst possible life” and 10 as “the best possible life”. The lack of parameters of what “worst” and “best” entails, partially diminishes the clarity of the data produced as each person has a different understanding of these terms. Consequently, this lack of clarity somewhat decreases the accuracy and validity of the conclusions one can make when analysing the data. Thus, albeit the source where the data was found and published is highly reliable, the method in which the data was measured partially impedes its usefulness.

StakeHolders: Who gains value from this data?

The data provided in this report offers the most use to governments who wish to make informed policy decisions to target problematic issues within their population. As the data is sourced from subjective self reporting, the information derived from such a report can be useful in modelling a general consensus regarding the quality of life of citizens. Unlike normal measurements taken into account during policy-making, this further accommodates for the social perceptions of citizen regarding their quality of life. It provides an insight on the over-all mental well-being of the population and the areas which the population believes needs more attention but may not necessarily be on the government’s agenda. Thus, it is of great interest to governments of each nation as it can be used in conglomeration with other measurements of quality of life, to accurately illustrate the state of “well being” for each nation.

Additionally the importance of the report is pushed by The Organisation for Economic Co-operation and Development (OECD) which consists of 35 developed countries including Australia. The OECD is an official United Nations observer and commits itself “to redefine the growth narrative to put people’s well-being at the centre of governments’ efforts”. (OECD 2016 Strategic Orientations of the Secretary-General: For 2016 and beyond). In this sense the data offered by this report is fundamental to the OECD in building strategies to model and build strategies to improve the happiness of its member countries.

Furthermore, organisations which seek to diminish global inequality such as Oxfam and Caritas have great use for this data as it allows them to perceive and then portray inequality from a more social and humanistic standpoint. Unlike traditional measurements such as the human development index, by using happiness as a measurement it allows them to illustrate the true social effects of inequality across different nations. It further allows these organisations to draw parallels between rates of happiness and economic status, to emphasise the consistent drive to provide less-privileged countries new sources of income. Thus, its of crucial of importance as it enables such organisations to more accurately illustrate the rate of inequality and the importance to combat it.

Dataset:

head(WHR, n = 157)
##                     Country                          Region Happiness.Rank
## 1                   Denmark                  Western Europe              1
## 2               Switzerland                  Western Europe              2
## 3                   Iceland                  Western Europe              3
## 4                    Norway                  Western Europe              4
## 5                   Finland                  Western Europe              5
## 6                    Canada                   North America              6
## 7               Netherlands                  Western Europe              7
## 8               New Zealand       Australia and New Zealand              8
## 9                 Australia       Australia and New Zealand              9
## 10                   Sweden                  Western Europe             10
## 11                   Israel Middle East and Northern Africa             11
## 12                  Austria                  Western Europe             12
## 13            United States                   North America             13
## 14               Costa Rica     Latin America and Caribbean             14
## 15              Puerto Rico     Latin America and Caribbean             15
## 16                  Germany                  Western Europe             16
## 17                   Brazil     Latin America and Caribbean             17
## 18                  Belgium                  Western Europe             18
## 19                  Ireland                  Western Europe             19
## 20               Luxembourg                  Western Europe             20
## 21                   Mexico     Latin America and Caribbean             21
## 22                Singapore               Southeastern Asia             22
## 23           United Kingdom                  Western Europe             23
## 24                    Chile     Latin America and Caribbean             24
## 25                   Panama     Latin America and Caribbean             25
## 26                Argentina     Latin America and Caribbean             26
## 27           Czech Republic      Central and Eastern Europe             27
## 28     United Arab Emirates Middle East and Northern Africa             28
## 29                  Uruguay     Latin America and Caribbean             29
## 30                    Malta                  Western Europe             30
## 31                 Colombia     Latin America and Caribbean             31
## 32                   France                  Western Europe             32
## 33                 Thailand               Southeastern Asia             33
## 34             Saudi Arabia Middle East and Northern Africa             34
## 35                   Taiwan                    Eastern Asia             34
## 36                    Qatar Middle East and Northern Africa             36
## 37                    Spain                  Western Europe             37
## 38                  Algeria Middle East and Northern Africa             38
## 39                Guatemala     Latin America and Caribbean             39
## 40                 Suriname     Latin America and Caribbean             40
## 41                   Kuwait Middle East and Northern Africa             41
## 42                  Bahrain Middle East and Northern Africa             42
## 43      Trinidad and Tobago     Latin America and Caribbean             43
## 44                Venezuela     Latin America and Caribbean             44
## 45                 Slovakia      Central and Eastern Europe             45
## 46              El Salvador     Latin America and Caribbean             46
## 47                 Malaysia               Southeastern Asia             47
## 48                Nicaragua     Latin America and Caribbean             48
## 49               Uzbekistan      Central and Eastern Europe             49
## 50                    Italy                  Western Europe             50
## 51                  Ecuador     Latin America and Caribbean             51
## 52                   Belize     Latin America and Caribbean             52
## 53                    Japan                    Eastern Asia             53
## 54               Kazakhstan      Central and Eastern Europe             54
## 55                  Moldova      Central and Eastern Europe             55
## 56                   Russia      Central and Eastern Europe             56
## 57                   Poland      Central and Eastern Europe             57
## 58              South Korea                    Eastern Asia             57
## 59                  Bolivia     Latin America and Caribbean             59
## 60                Lithuania      Central and Eastern Europe             60
## 61                  Belarus      Central and Eastern Europe             61
## 62             North Cyprus                  Western Europe             62
## 63                 Slovenia      Central and Eastern Europe             63
## 64                     Peru     Latin America and Caribbean             64
## 65             Turkmenistan      Central and Eastern Europe             65
## 66                Mauritius              Sub-Saharan Africa             66
## 67                    Libya Middle East and Northern Africa             67
## 68                   Latvia      Central and Eastern Europe             68
## 69                   Cyprus                  Western Europe             69
## 70                 Paraguay     Latin America and Caribbean             70
## 71                  Romania      Central and Eastern Europe             71
## 72                  Estonia      Central and Eastern Europe             72
## 73                  Jamaica     Latin America and Caribbean             73
## 74                  Croatia      Central and Eastern Europe             74
## 75                Hong Kong                    Eastern Asia             75
## 76                  Somalia              Sub-Saharan Africa             76
## 77                   Kosovo      Central and Eastern Europe             77
## 78                   Turkey Middle East and Northern Africa             78
## 79                Indonesia               Southeastern Asia             79
## 80                   Jordan Middle East and Northern Africa             80
## 81               Azerbaijan      Central and Eastern Europe             81
## 82              Philippines               Southeastern Asia             82
## 83                    China                    Eastern Asia             83
## 84                   Bhutan                   Southern Asia             84
## 85               Kyrgyzstan      Central and Eastern Europe             85
## 86                   Serbia      Central and Eastern Europe             86
## 87   Bosnia and Herzegovina      Central and Eastern Europe             87
## 88               Montenegro      Central and Eastern Europe             88
## 89       Dominican Republic     Latin America and Caribbean             89
## 90                  Morocco Middle East and Northern Africa             90
## 91                  Hungary      Central and Eastern Europe             91
## 92                 Pakistan                   Southern Asia             92
## 93                  Lebanon Middle East and Northern Africa             93
## 94                 Portugal                  Western Europe             94
## 95                Macedonia      Central and Eastern Europe             95
## 96                  Vietnam               Southeastern Asia             96
## 97        Somaliland Region              Sub-Saharan Africa             97
## 98                  Tunisia Middle East and Northern Africa             98
## 99                   Greece                  Western Europe             99
## 100              Tajikistan      Central and Eastern Europe            100
## 101                Mongolia                    Eastern Asia            101
## 102                    Laos               Southeastern Asia            102
## 103                 Nigeria              Sub-Saharan Africa            103
## 104                Honduras     Latin America and Caribbean            104
## 105                    Iran Middle East and Northern Africa            105
## 106                  Zambia              Sub-Saharan Africa            106
## 107                   Nepal                   Southern Asia            107
## 108 Palestinian Territories Middle East and Northern Africa            108
## 109                 Albania      Central and Eastern Europe            109
## 110              Bangladesh                   Southern Asia            110
## 111            Sierra Leone              Sub-Saharan Africa            111
## 112                    Iraq Middle East and Northern Africa            112
## 113                 Namibia              Sub-Saharan Africa            113
## 114                Cameroon              Sub-Saharan Africa            114
## 115                Ethiopia              Sub-Saharan Africa            115
## 116            South Africa              Sub-Saharan Africa            116
## 117               Sri Lanka                   Southern Asia            117
## 118                   India                   Southern Asia            118
## 119                 Myanmar               Southeastern Asia            119
## 120                   Egypt Middle East and Northern Africa            120
## 121                 Armenia      Central and Eastern Europe            121
## 122                   Kenya              Sub-Saharan Africa            122
## 123                 Ukraine      Central and Eastern Europe            123
## 124                   Ghana              Sub-Saharan Africa            124
## 125        Congo (Kinshasa)              Sub-Saharan Africa            125
## 126                 Georgia      Central and Eastern Europe            126
## 127     Congo (Brazzaville)              Sub-Saharan Africa            127
## 128                 Senegal              Sub-Saharan Africa            128
## 129                Bulgaria      Central and Eastern Europe            129
## 130              Mauritania              Sub-Saharan Africa            130
## 131                Zimbabwe              Sub-Saharan Africa            131
## 132                  Malawi              Sub-Saharan Africa            132
## 133                   Sudan              Sub-Saharan Africa            133
## 134                   Gabon              Sub-Saharan Africa            134
## 135                    Mali              Sub-Saharan Africa            135
## 136                   Haiti     Latin America and Caribbean            136
## 137                Botswana              Sub-Saharan Africa            137
## 138                 Comoros              Sub-Saharan Africa            138
## 139             Ivory Coast              Sub-Saharan Africa            139
## 140                Cambodia               Southeastern Asia            140
## 141                  Angola              Sub-Saharan Africa            141
## 142                   Niger              Sub-Saharan Africa            142
## 143             South Sudan              Sub-Saharan Africa            143
## 144                    Chad              Sub-Saharan Africa            144
## 145            Burkina Faso              Sub-Saharan Africa            145
## 146                  Uganda              Sub-Saharan Africa            145
## 147                   Yemen Middle East and Northern Africa            147
## 148              Madagascar              Sub-Saharan Africa            148
## 149                Tanzania              Sub-Saharan Africa            149
## 150                 Liberia              Sub-Saharan Africa            150
## 151                  Guinea              Sub-Saharan Africa            151
## 152                  Rwanda              Sub-Saharan Africa            152
## 153                   Benin              Sub-Saharan Africa            153
## 154             Afghanistan                   Southern Asia            154
## 155                    Togo              Sub-Saharan Africa            155
## 156                   Syria Middle East and Northern Africa            156
## 157                 Burundi              Sub-Saharan Africa            157
##     Happiness.Score Lower.Confidence.Interval Upper.Confidence.Interval
## 1             7.526                     7.460                     7.592
## 2             7.509                     7.428                     7.590
## 3             7.501                     7.333                     7.669
## 4             7.498                     7.421                     7.575
## 5             7.413                     7.351                     7.475
## 6             7.404                     7.335                     7.473
## 7             7.339                     7.284                     7.394
## 8             7.334                     7.264                     7.404
## 9             7.313                     7.241                     7.385
## 10            7.291                     7.227                     7.355
## 11            7.267                     7.199                     7.335
## 12            7.119                     7.045                     7.193
## 13            7.104                     7.020                     7.188
## 14            7.087                     6.999                     7.175
## 15            7.039                     6.794                     7.284
## 16            6.994                     6.930                     7.058
## 17            6.952                     6.875                     7.029
## 18            6.929                     6.861                     6.997
## 19            6.907                     6.836                     6.978
## 20            6.871                     6.804                     6.938
## 21            6.778                     6.680                     6.876
## 22            6.739                     6.674                     6.804
## 23            6.725                     6.647                     6.803
## 24            6.705                     6.615                     6.795
## 25            6.701                     6.601                     6.801
## 26            6.650                     6.560                     6.740
## 27            6.596                     6.515                     6.677
## 28            6.573                     6.494                     6.652
## 29            6.545                     6.456                     6.634
## 30            6.488                     6.409                     6.567
## 31            6.481                     6.384                     6.578
## 32            6.478                     6.397                     6.559
## 33            6.474                     6.396                     6.552
## 34            6.379                     6.287                     6.471
## 35            6.379                     6.305                     6.453
## 36            6.375                     6.178                     6.572
## 37            6.361                     6.288                     6.434
## 38            6.355                     6.227                     6.483
## 39            6.324                     6.213                     6.435
## 40            6.269                     6.073                     6.465
## 41            6.239                     6.154                     6.324
## 42            6.218                     6.128                     6.308
## 43            6.168                     5.950                     6.386
## 44            6.084                     5.973                     6.195
## 45            6.078                     5.996                     6.160
## 46            6.068                     5.967                     6.169
## 47            6.005                     5.921                     6.089
## 48            5.992                     5.877                     6.107
## 49            5.987                     5.896                     6.078
## 50            5.977                     5.898                     6.056
## 51            5.976                     5.880                     6.072
## 52            5.956                     5.710                     6.202
## 53            5.921                     5.850                     5.992
## 54            5.919                     5.837                     6.001
## 55            5.897                     5.823                     5.971
## 56            5.856                     5.789                     5.923
## 57            5.835                     5.749                     5.921
## 58            5.835                     5.747                     5.923
## 59            5.822                     5.740                     5.904
## 60            5.813                     5.734                     5.892
## 61            5.802                     5.723                     5.881
## 62            5.771                     5.670                     5.872
## 63            5.768                     5.683                     5.853
## 64            5.743                     5.647                     5.839
## 65            5.658                     5.580                     5.736
## 66            5.648                     5.507                     5.789
## 67            5.615                     5.406                     5.824
## 68            5.560                     5.486                     5.634
## 69            5.546                     5.442                     5.650
## 70            5.538                     5.453                     5.623
## 71            5.528                     5.427                     5.629
## 72            5.517                     5.437                     5.597
## 73            5.510                     5.315                     5.705
## 74            5.488                     5.402                     5.574
## 75            5.458                     5.362                     5.554
## 76            5.440                     5.321                     5.559
## 77            5.401                     5.308                     5.494
## 78            5.389                     5.295                     5.483
## 79            5.314                     5.237                     5.391
## 80            5.303                     5.187                     5.419
## 81            5.291                     5.226                     5.356
## 82            5.279                     5.160                     5.398
## 83            5.245                     5.199                     5.291
## 84            5.196                     5.138                     5.254
## 85            5.185                     5.103                     5.267
## 86            5.177                     5.083                     5.271
## 87            5.163                     5.063                     5.263
## 88            5.161                     5.055                     5.267
## 89            5.155                     5.037                     5.273
## 90            5.151                     5.058                     5.244
## 91            5.145                     5.056                     5.234
## 92            5.132                     5.038                     5.226
## 93            5.129                     5.031                     5.227
## 94            5.123                     5.030                     5.216
## 95            5.121                     5.017                     5.225
## 96            5.061                     4.991                     5.131
## 97            5.057                     4.934                     5.180
## 98            5.045                     4.965                     5.125
## 99            5.033                     4.935                     5.131
## 100           4.996                     4.923                     5.069
## 101           4.907                     4.838                     4.976
## 102           4.876                     4.742                     5.010
## 103           4.875                     4.750                     5.000
## 104           4.871                     4.750                     4.992
## 105           4.813                     4.703                     4.923
## 106           4.795                     4.645                     4.945
## 107           4.793                     4.698                     4.888
## 108           4.754                     4.649                     4.859
## 109           4.655                     4.546                     4.764
## 110           4.643                     4.560                     4.726
## 111           4.635                     4.505                     4.765
## 112           4.575                     4.446                     4.704
## 113           4.574                     4.374                     4.774
## 114           4.513                     4.417                     4.609
## 115           4.508                     4.425                     4.591
## 116           4.459                     4.371                     4.547
## 117           4.415                     4.322                     4.508
## 118           4.404                     4.351                     4.457
## 119           4.395                     4.327                     4.463
## 120           4.362                     4.259                     4.465
## 121           4.360                     4.266                     4.454
## 122           4.356                     4.259                     4.453
## 123           4.324                     4.236                     4.412
## 124           4.276                     4.185                     4.367
## 125           4.272                     4.191                     4.353
## 126           4.252                     4.164                     4.340
## 127           4.236                     4.107                     4.365
## 128           4.219                     4.151                     4.287
## 129           4.217                     4.104                     4.330
## 130           4.201                     4.127                     4.275
## 131           4.193                     4.101                     4.285
## 132           4.156                     4.041                     4.271
## 133           4.139                     3.928                     4.350
## 134           4.121                     4.030                     4.212
## 135           4.073                     3.988                     4.158
## 136           4.028                     3.893                     4.163
## 137           3.974                     3.875                     4.073
## 138           3.956                     3.860                     4.052
## 139           3.916                     3.826                     4.006
## 140           3.907                     3.798                     4.016
## 141           3.866                     3.753                     3.979
## 142           3.856                     3.781                     3.931
## 143           3.832                     3.596                     4.068
## 144           3.763                     3.672                     3.854
## 145           3.739                     3.647                     3.831
## 146           3.739                     3.629                     3.849
## 147           3.724                     3.621                     3.827
## 148           3.695                     3.621                     3.769
## 149           3.666                     3.561                     3.771
## 150           3.622                     3.463                     3.781
## 151           3.607                     3.533                     3.681
## 152           3.515                     3.444                     3.586
## 153           3.484                     3.404                     3.564
## 154           3.360                     3.288                     3.432
## 155           3.303                     3.192                     3.414
## 156           3.069                     2.936                     3.202
## 157           2.905                     2.732                     3.078
##     Economy..GDP.per.Capita.  Family Health..Life.Expectancy. Freedom
## 1                    1.44178 1.16374                  0.79504 0.57941
## 2                    1.52733 1.14524                  0.86303 0.58557
## 3                    1.42666 1.18326                  0.86733 0.56624
## 4                    1.57744 1.12690                  0.79579 0.59609
## 5                    1.40598 1.13464                  0.81091 0.57104
## 6                    1.44015 1.09610                  0.82760 0.57370
## 7                    1.46468 1.02912                  0.81231 0.55211
## 8                    1.36066 1.17278                  0.83096 0.58147
## 9                    1.44443 1.10476                  0.85120 0.56837
## 10                   1.45181 1.08764                  0.83121 0.58218
## 11                   1.33766 0.99537                  0.84917 0.36432
## 12                   1.45038 1.08383                  0.80565 0.54355
## 13                   1.50796 1.04782                  0.77900 0.48163
## 14                   1.06879 1.02152                  0.76146 0.55225
## 15                   1.35943 1.08113                  0.77758 0.46823
## 16                   1.44787 1.09774                  0.81487 0.53466
## 17                   1.08754 1.03938                  0.61415 0.40425
## 18                   1.42539 1.05249                  0.81959 0.51354
## 19                   1.48341 1.16157                  0.81455 0.54008
## 20                   1.69752 1.03999                  0.84542 0.54870
## 21                   1.11508 0.71460                  0.71143 0.37709
## 22                   1.64555 0.86758                  0.94719 0.48770
## 23                   1.40283 1.08672                  0.80991 0.50036
## 24                   1.21670 0.90587                  0.81883 0.37789
## 25                   1.18306 0.98912                  0.70835 0.48927
## 26                   1.15137 1.06612                  0.69711 0.42284
## 27                   1.30915 1.00793                  0.76376 0.41418
## 28                   1.57352 0.87114                  0.72993 0.56215
## 29                   1.18157 1.03143                  0.72183 0.54388
## 30                   1.30782 1.09879                  0.80315 0.54994
## 31                   1.03032 1.02169                  0.59659 0.44735
## 32                   1.39488 1.00508                  0.83795 0.46562
## 33                   1.08930 1.04477                  0.64915 0.49553
## 34                   1.48953 0.84829                  0.59267 0.37904
## 35                   1.39729 0.92624                  0.79565 0.32377
## 36                   1.82427 0.87964                  0.71723 0.56679
## 37                   1.34253 1.12945                  0.87896 0.37545
## 38                   1.05266 0.83309                  0.61804 0.21006
## 39                   0.83454 0.87119                  0.54039 0.50379
## 40                   1.09686 0.77866                  0.50933 0.52234
## 41                   1.61714 0.87758                  0.63569 0.43166
## 42                   1.44024 0.94397                  0.65696 0.47375
## 43                   1.32572 0.98569                  0.52608 0.48453
## 44                   1.13367 1.03302                  0.61904 0.19847
## 45                   1.27973 1.08268                  0.70367 0.23391
## 46                   0.87370 0.80975                  0.59600 0.37269
## 47                   1.25142 0.88025                  0.62366 0.39031
## 48                   0.69384 0.89521                  0.65213 0.46582
## 49                   0.73591 1.16810                  0.50163 0.60848
## 50                   1.35495 1.04167                  0.85102 0.18827
## 51                   0.97306 0.85974                  0.68613 0.40270
## 52                   0.87616 0.68655                  0.45569 0.51231
## 53                   1.38007 1.06054                  0.91491 0.46761
## 54                   1.22943 0.95544                  0.57386 0.40520
## 55                   0.69177 0.83132                  0.52309 0.25202
## 56                   1.23228 1.05261                  0.58991 0.32682
## 57                   1.24585 1.04685                  0.69058 0.45190
## 58                   1.35948 0.72194                  0.88645 0.25168
## 59                   0.79422 0.83779                  0.46970 0.50961
## 60                   1.26920 1.06411                  0.64674 0.18929
## 61                   1.13062 1.04993                  0.63104 0.29091
## 62                   1.31141 0.81826                  0.84142 0.43596
## 63                   1.29947 1.05613                  0.79151 0.53164
## 64                   0.99602 0.81255                  0.62994 0.37502
## 65                   1.08017 1.03817                  0.44006 0.37408
## 66                   1.14372 0.75695                  0.66189 0.46145
## 67                   1.06688 0.95076                  0.52304 0.40672
## 68                   1.21788 0.95025                  0.63952 0.27996
## 69                   1.31857 0.70697                  0.84880 0.29507
## 70                   0.89373 1.11111                  0.58295 0.46235
## 71                   1.16970 0.72803                  0.67602 0.36712
## 72                   1.27964 1.05163                  0.68098 0.41511
## 73                   0.89333 0.96372                  0.59469 0.43597
## 74                   1.18649 0.60809                  0.70524 0.23907
## 75                   1.51070 0.87021                  0.95277 0.48079
## 76                   0.00000 0.33613                  0.11466 0.56778
## 77                   0.90145 0.66062                  0.54000 0.14396
## 78                   1.16492 0.87717                  0.64718 0.23889
## 79                   0.95104 0.87625                  0.49374 0.39237
## 80                   0.99673 0.86216                  0.60712 0.36023
## 81                   1.12373 0.76042                  0.54504 0.35327
## 82                   0.81217 0.87877                  0.47036 0.54854
## 83                   1.02780 0.79381                  0.73561 0.44012
## 84                   0.85270 0.90836                  0.49759 0.46074
## 85                   0.56044 0.95434                  0.55449 0.40212
## 86                   1.03437 0.81329                  0.64580 0.15718
## 87                   0.93383 0.64367                  0.70766 0.09511
## 88                   1.07838 0.74173                  0.63533 0.15111
## 89                   1.02787 0.99496                  0.57669 0.52259
## 90                   0.84058 0.38595                  0.59471 0.25646
## 91                   1.24142 0.93164                  0.67608 0.19770
## 92                   0.68816 0.26135                  0.40306 0.14622
## 93                   1.12268 0.64184                  0.76171 0.26228
## 94                   1.27607 0.94367                  0.79363 0.44727
## 95                   1.01930 0.78236                  0.64738 0.27668
## 96                   0.74037 0.79117                  0.66157 0.55954
## 97                   0.25558 0.75862                  0.33108 0.39130
## 98                   0.97724 0.43165                  0.59577 0.23553
## 99                   1.24886 0.75473                  0.80029 0.05822
## 100                  0.48835 0.75602                  0.53119 0.43408
## 101                  0.98853 1.08983                  0.55469 0.35972
## 102                  0.68042 0.54970                  0.38291 0.52168
## 103                  0.75216 0.64498                  0.05108 0.27854
## 104                  0.69429 0.75596                  0.58383 0.26755
## 105                  1.11758 0.38857                  0.64232 0.22544
## 106                  0.61202 0.63760                  0.23573 0.42662
## 107                  0.44626 0.69699                  0.50073 0.37012
## 108                  0.67024 0.71629                  0.56844 0.17744
## 109                  0.95530 0.50163                  0.73007 0.31866
## 110                  0.54177 0.24749                  0.52989 0.39778
## 111                  0.36485 0.62800                  0.00000 0.30685
## 112                  1.07474 0.59205                  0.51076 0.24856
## 113                  0.93287 0.70362                  0.34745 0.48614
## 114                  0.52497 0.62542                  0.12698 0.42736
## 115                  0.29283 0.37932                  0.34578 0.36703
## 116                  1.02416 0.96053                  0.18611 0.42483
## 117                  0.97318 0.84783                  0.62007 0.50817
## 118                  0.74036 0.29247                  0.45091 0.40285
## 119                  0.34112 0.69981                  0.39880 0.42692
## 120                  0.95395 0.49813                  0.52116 0.18847
## 121                  0.86086 0.62477                  0.64083 0.14037
## 122                  0.52267 0.76240                  0.30147 0.40576
## 123                  0.87287 1.01413                  0.58628 0.12859
## 124                  0.63107 0.49353                  0.29681 0.40973
## 125                  0.05661 0.80676                  0.18800 0.15602
## 126                  0.83792 0.19249                  0.64035 0.32461
## 127                  0.77109 0.47799                  0.28212 0.37938
## 128                  0.44314 0.77416                  0.40457 0.31056
## 129                  1.11306 0.92542                  0.67806 0.21219
## 130                  0.61391 0.84142                  0.28639 0.12680
## 131                  0.35041 0.71478                  0.15950 0.25429
## 132                  0.08709 0.14700                  0.29364 0.41430
## 133                  0.63069 0.81928                  0.29759 0.00000
## 134                  1.15851 0.72368                  0.34940 0.28098
## 135                  0.31292 0.86333                  0.16347 0.27544
## 136                  0.34097 0.29561                  0.27494 0.12072
## 137                  1.09426 0.89186                  0.34752 0.44089
## 138                  0.27509 0.60323                  0.29981 0.15412
## 139                  0.55507 0.57576                  0.04476 0.40663
## 140                  0.55604 0.53750                  0.42494 0.58852
## 141                  0.84731 0.66366                  0.04991 0.00589
## 142                  0.13270 0.60530                  0.26162 0.38041
## 143                  0.39394 0.18519                  0.15781 0.19662
## 144                  0.42214 0.63178                  0.03824 0.12807
## 145                  0.31995 0.63054                  0.21297 0.33370
## 146                  0.34719 0.90981                  0.19625 0.43653
## 147                  0.57939 0.47493                  0.31048 0.22870
## 148                  0.27954 0.46115                  0.37109 0.13684
## 149                  0.47155 0.77623                  0.35700 0.31760
## 150                  0.10706 0.50353                  0.23165 0.25748
## 151                  0.22415 0.31090                  0.18829 0.30953
## 152                  0.32846 0.61586                  0.31865 0.54320
## 153                  0.39499 0.10419                  0.21028 0.39747
## 154                  0.38227 0.11037                  0.17344 0.16430
## 155                  0.28123 0.00000                  0.24811 0.34678
## 156                  0.74719 0.14866                  0.62994 0.06912
## 157                  0.06831 0.23442                  0.15747 0.04320
##     Trust..Government.Corruption. Generosity Dystopia.Residual
## 1                         0.44453    0.36171           2.73939
## 2                         0.41203    0.28083           2.69463
## 3                         0.14975    0.47678           2.83137
## 4                         0.35776    0.37895           2.66465
## 5                         0.41004    0.25492           2.82596
## 6                         0.31329    0.44834           2.70485
## 7                         0.29927    0.47416           2.70749
## 8                         0.41904    0.49401           2.47553
## 9                         0.32331    0.47407           2.54650
## 10                        0.40867    0.38254           2.54734
## 11                        0.08728    0.32288           3.31029
## 12                        0.21348    0.32865           2.69343
## 13                        0.14868    0.41077           2.72782
## 14                        0.10547    0.22553           3.35168
## 15                        0.12275    0.22202           3.00760
## 16                        0.28551    0.30452           2.50931
## 17                        0.14166    0.15776           3.50733
## 18                        0.26248    0.24240           2.61355
## 19                        0.29754    0.44963           2.15988
## 20                        0.35329    0.27571           2.11055
## 21                        0.18355    0.11735           3.55906
## 22                        0.46987    0.32706           1.99375
## 23                        0.27399    0.50156           2.14999
## 24                        0.11451    0.31595           2.95505
## 25                        0.08423    0.24180           3.00559
## 26                        0.07296    0.10989           3.12985
## 27                        0.03986    0.09929           2.96211
## 28                        0.35561    0.26591           2.21507
## 29                        0.21394    0.18056           2.67139
## 30                        0.17554    0.56237           1.99032
## 31                        0.05399    0.15626           3.17471
## 32                        0.17808    0.12160           2.47440
## 33                        0.02833    0.58696           2.57960
## 34                        0.30008    0.15457           2.61482
## 35                        0.06630    0.25495           2.61523
## 36                        0.48049    0.32388           1.58224
## 37                        0.06137    0.17665           2.39663
## 38                        0.16157    0.07044           3.40904
## 39                        0.08701    0.28808           3.19863
## 40                        0.12692    0.16665           3.06852
## 41                        0.23669    0.15965           2.28085
## 42                        0.25772    0.17147           2.27405
## 43                        0.01241    0.31935           2.51394
## 44                        0.08304    0.04250           2.97468
## 45                        0.02947    0.13837           2.61065
## 46                        0.10613    0.08877           3.22134
## 47                        0.09081    0.41474           2.35384
## 48                        0.16292    0.29773           2.82428
## 49                        0.28333    0.34326           2.34638
## 50                        0.02556    0.16684           2.34918
## 51                        0.18037    0.10074           2.77366
## 52                        0.10771    0.23684           3.08039
## 53                        0.18985    0.10224           1.80584
## 54                        0.11132    0.15011           2.49325
## 55                        0.01903    0.19997           3.38007
## 56                        0.03586    0.02736           2.59115
## 57                        0.05500    0.14443           2.20035
## 58                        0.07716    0.18824           2.35015
## 59                        0.07746    0.21698           2.91635
## 60                        0.01820    0.02025           2.60525
## 61                        0.17457    0.13942           2.38582
## 62                        0.16578    0.26322           1.93447
## 63                        0.03635    0.25738           1.79522
## 64                        0.05292    0.14527           2.73117
## 65                        0.28467    0.22567           2.21489
## 66                        0.05203    0.36951           2.20223
## 67                        0.10339    0.17087           2.39374
## 68                        0.08890    0.17445           2.20859
## 69                        0.05228    0.27906           2.04497
## 70                        0.07396    0.25296           2.16091
## 71                        0.00679    0.12889           2.45184
## 72                        0.18519    0.08423           1.81985
## 73                        0.04294    0.22245           2.35682
## 74                        0.04002    0.18434           2.52462
## 75                        0.31647    0.40097           0.92614
## 76                        0.31180    0.27225           3.83772
## 77                        0.06547    0.27992           2.80998
## 78                        0.12348    0.04707           2.29074
## 79                        0.00322    0.56521           2.03171
## 80                        0.13297    0.14262           2.20142
## 81                        0.17914    0.05640           2.27350
## 82                        0.11757    0.21674           2.23484
## 83                        0.02745    0.04959           2.17087
## 84                        0.16160    0.48546           1.82916
## 85                        0.04762    0.38432           2.28136
## 86                        0.04339    0.20737           2.27539
## 87                        0.00000    0.29889           2.48406
## 88                        0.12721    0.17191           2.25531
## 89                        0.12372    0.21286           1.69626
## 90                        0.08404    0.04053           2.94891
## 91                        0.04472    0.09900           1.95473
## 92                        0.13880    0.31185           3.18286
## 93                        0.03061    0.23693           2.07339
## 94                        0.01521    0.11691           1.53015
## 95                        0.07047    0.23507           2.08947
## 96                        0.11556    0.25075           1.94180
## 97                        0.36794    0.51479           2.43801
## 98                        0.08170    0.03936           2.68413
## 99                        0.04127    0.00000           2.12944
## 100                       0.13509    0.25998           2.39106
## 101                       0.03285    0.34539           1.53586
## 102                       0.22423    0.43079           2.08637
## 103                       0.03050    0.23219           2.88586
## 104                       0.06906    0.20440           2.29551
## 105                       0.05570    0.38538           1.99817
## 106                       0.11479    0.17866           2.58991
## 107                       0.07008    0.38160           2.32694
## 108                       0.10613    0.11154           2.40364
## 109                       0.05301    0.16840           1.92816
## 110                       0.12583    0.19132           2.60904
## 111                       0.08196    0.23897           3.01402
## 112                       0.13636    0.19589           1.81657
## 113                       0.10398    0.07795           1.92198
## 114                       0.06126    0.22680           2.51980
## 115                       0.17170    0.29522           2.65614
## 116                       0.08415    0.13656           1.64227
## 117                       0.07964    0.46978           0.91681
## 118                       0.08722    0.25028           2.18032
## 119                       0.20243    0.81971           1.50655
## 120                       0.10393    0.12706           1.96895
## 121                       0.03616    0.07793           1.97864
## 122                       0.06686    0.41328           1.88326
## 123                       0.01829    0.20363           1.50066
## 124                       0.03260    0.21203           2.20020
## 125                       0.06075    0.25458           2.74924
## 126                       0.31880    0.06786           1.87031
## 127                       0.09753    0.12077           2.10681
## 128                       0.11681    0.19103           1.97861
## 129                       0.00615    0.12793           1.15377
## 130                       0.17955    0.22686           1.92630
## 131                       0.08582    0.18503           2.44270
## 132                       0.07564    0.30968           2.82859
## 133                       0.10039    0.18077           2.10995
## 134                       0.09314    0.06244           1.45332
## 135                       0.13647    0.21064           2.11087
## 136                       0.14476    0.47958           2.37116
## 137                       0.10769    0.12425           0.96741
## 138                       0.18437    0.18270           2.25632
## 139                       0.15530    0.20338           1.97478
## 140                       0.08092    0.40339           1.31573
## 141                       0.08434    0.12071           2.09459
## 142                       0.17176    0.20970           2.09469
## 143                       0.13015    0.25899           2.50929
## 144                       0.04952    0.18667           2.30637
## 145                       0.12533    0.24353           1.87319
## 146                       0.06442    0.27102           1.51416
## 147                       0.05892    0.09821           1.97295
## 148                       0.07506    0.22040           2.15075
## 149                       0.05099    0.31472           1.37769
## 150                       0.04852    0.24063           2.23284
## 151                       0.11920    0.29914           2.15604
## 152                       0.50521    0.23552           0.96819
## 153                       0.06681    0.20180           2.10812
## 154                       0.07112    0.31268           2.14558
## 155                       0.11587    0.17517           2.13540
## 156                       0.17233    0.48397           0.81789
## 157                       0.09419    0.20290           2.10404