The goal of this workshop is to introduce you to longitudinal social network analysis.

Analytical Models

Stochastic Actor-oriented Model (SAOM)

The stochastic actor-oriented model was developed by Tom Snijders and colleagues. Its purpose is to represent network dynamics based on observed longitudinal data, and to draw conclusions about the analyzed populations based on the model. Variants of SAOM for multiplex data (co-evolution of edges) and for modeling networks collected in different groups (e.g., different classrooms) exists. The following assumptions hold for SAOM models:

  • Time t is continuous. While the parameter estimation assumes that data is observed at two or more discrete points in time (network panel wave), the model assumes that between the observed data collection periods, unobserved mini-steps are happening. This allows for explaining how three people who at time 0 were not connected, suddenly, at time 1 form a closed triangle. This closed triangle did not appear out of nowhere but is the result of three mini steps which happened while you were not observing your participants.
  • The observed network is the consequences of previous networks. This means that all information that is contained in an earlier network (t-1) determine the probability with which ties are present/absent at the next stage (t). Factors that occurred even further back in time (e.g. t-2) have no impact on the network at time t. This is called a Markov process.
  • The person sending the tie (ego, denoted as i) decides if he/she wants to be connected to another person (alter, denoted as j). This excludes any relationships that are based on negotiations. Network formation is thus actor-based.
  • At any moment in time, only one outgoing tie can change. Hence, ties change one by one. This makes the network easier to model.
  • The rate at which ties changes depends on an actor’s and her/his alters network position and covariates.
  • It is assumed that all actors have the same propensity to change their ties. In other words, they have the same objective function. Heterogeneity is added to the model by including network effects and covariates. However, the underlying assumption is that actors only evaluates the impact of their decision on their network position, and do not consider subsequent decisions by other actors. Hence, actors do not evaluate the responses from other actors.

Temporal Exponential Random Graph Model (TERGM)

The temporal exponential random graph model was developed by Steve Hanneke and colleagues and is an extension to the simple exponential random graph model (ERGM). In simple terms, ERGM is a logistic regression that calculates the probability that an edge is present or absent based on the network structure and covariates. TERGM is an extension of ERGM.

TERGM and SAOM are pretty similar. Below a description of their differences to aid when one method is more appropriate than the other:

  • In contrast to SAOM, TERMG does not make any assumptions about the agency of actors. While the mathematics behind the model make no claim about actor agency, the way in which the model is created has an actor-centric flavor.
  • TERGM does not consider the mini-steps that might occur between t and t+1. It accepts that edges which did not exist at t but exists at t+1 might have occurred sequentially or simultaneously.
  • SAOM purposefully models the change in networks between time periods. TERGM focuses on modeling the network. The temporal dimension is included by adding a memory term in the equation as a control variable. This memory term references the previously observed network.

While from a theoretical perspective, SAOM outperforms TERGM, testing of the two models using real data showed that TERGM more accurately predicted edges.

variants for “multiplex”, “multi-relational”, or “multi-level” ERGMs as well (Wang et al. 2013), but they have not yet been extended to the temporal case.

Relational Event Model (REM)

The relational event model was developed by Carter T Butts and colleagues. It focuses on behavioral interactions, which are defined as discrete events directed at a person or a group of people. It assumes that past interactions create the context for future interactions. This means that every action that occurs depends on the action which occurred right before it. The following assumptions apply:

  • At each time point t only one event can occur.
  • A current event t is not influenced by the realization of future events t+1 (reverse causality).
  • A current event t is not influenced by the non-occurrence of an event that could have appended at t-1. The consequence of these assumptions is that REM is less suited for situations in which individuals have a strategic orientation, are able to engage in forward-looking behavior, or have time for observation and reflection.

Running a SAOM

Background

Context

Below is a short example of the steps necessary to run a SAOM. The data represents interaction between team members in several student teams. Each team consisted of around five master students and worked on a project for a client. The network was collected at the beginning of the course (t0), 3 weeks into the course (t1), and at the end of the course in week 7, before the grades were published (t2). More information about the context is available in Unbundling Information Exchange in Ad Hoc Project Teams.

Variables

The variables we collected were information retrieval and information allocation (dependent variables), awareness of team member’s expertise (knowing, independent variable), the importance team member’s attach to each other’s expertise (valuing, independent variable), how adaptive individuals are (adaptive expertise, independent variable), their emotional attachment to their group (social identity, independent variable), and background variables (gender, age, nationality, specialization, control variable).

What we did

We analyzed the data using a hierarchical stochastic actor oriented model using Bayesian regression. We made this choice due to the small size of network. While we had two dependent variables, we did not have enough data to calculate a co-evolution model, thus we could not estimate how information retrieval and information allocation influence each other. In place of this we calculated two models, one for information allocation and one for information retrieval.

SAOM Steps

For this workshop we will be focusing on modeling information retrieval for three teams using only valuing, and adaptive expertise as dependent variables. Running the complete model, as conducted in the linked study, was computational intensive.

In general, the steps are: 1. Import the data 2. Specify independent, dependent variables 3. Select the effects and specify the model 4. Test goodness of fit

Loading and preparing the data

We will first load the required packages and set our working directory.

If you don’t have the packages installed, run this line. If this fails, check the error message. Did a package that is needed for RSienaTest to run, fail to install? If this fails with a non-zero exist status and you have a mac, do you have the development tools (xcode) installed?

getwd()
## [1] "/Users/katerinadoyle/Dropbox/asc2018_longsna"
setwd("/Users/katerinadoyle/Dropbox/asc2018_longsna")
#install.packages("RUnit")
#install.packages("RSienaTest", repos="http://R-Forge.R-project.org", dependencies=T)

Use setwd to set the path to your working directory. For example, setwd("~/Dropbox/longitudinal_sna_asc_workshop/data"). In windows this would look like setwd("c:/Dropbox/longitudinal_sna_asc_workshop/data"). If you are unsure about your working directory you can type getwd in the console.

library(RSienaTest)

We begin with loading the data. A couple of words about the code to import the data. All the data about one variable for one team is assigned to one object (variable name <- as.matrix(...)). read.csv reads the data about one team. I have for each team one txt file. Therefore, I need to skip some rows (skip = 4) and tell the program how many rows to import (nrows = 4). I also need to add row names (row.names = 1) and column names (col.names = c(name1, name2, etc.)). I’m ok with having row names and column names that have the same names (check.names=FALSE). While not important, I’m telling R to convert string variables into dummy variables (stringsAsFactors =TRUE). That is not important as I don’t have any string variables. The only string are the header variables, and I indicated them. All data about one team is imported in one list (list(....)) to make the cleaning easier.

Network variables

adulteduc<-list(
#adulteduc t1
ae_val1<-as.matrix(read.csv("data/ae_teamdynamics_MASTER_UCINET-5.txt",na.strings=9, sep = ";", dec=",", row.names=1, col.names=c("row.nameS", "Daniel", "Liga", "Shengye", "Valentina") , skip=4, nrows=4, check.names=FALSE), stringsAsFactors=TRUE),
ae_is1<-as.matrix(read.csv("data/ae_teamdynamics_MASTER_UCINET-5.txt",na.strings=9, sep = ";", dec=",", row.names=1, col.names=c("row.nameS", "Daniel", "Liga", "Shengye", "Valentina") , skip=14, nrows=4, check.names=FALSE), stringsAsFactors=TRUE),
#aduleteduc t2
ae_val2<-as.matrix(read.csv("data/ae_teamdynamics_MASTER_UCINET-5.txt",na.strings=9, sep = ";", dec=",", row.names=1, col.names=c("row.nameS", "Daniel", "Liga", "Shengye", "Valentina") , skip=24, nrows=4, check.names=FALSE), stringsAsFactors=TRUE),
ae_is2<-as.matrix(read.csv("data/ae_teamdynamics_MASTER_UCINET-5.txt",na.strings=9, sep = ";", dec=",", row.names=1, col.names=c("row.nameS", "Daniel", "Liga", "Shengye", "Valentina") , skip=34, nrows=4, check.names=FALSE), stringsAsFactors=TRUE),
#aduleteduc t3
ae_val3<-as.matrix(read.csv("data/ae_teamdynamics_MASTER_UCINET-5.txt",na.strings=9, sep = ";", dec=",", row.names=1, col.names=c("row.nameS", "Daniel", "Liga", "Shengye", "Valentina") , skip=44, nrows=4, check.names=FALSE), stringsAsFactors=TRUE),
ae_is3<-as.matrix(read.csv("data/ae_teamdynamics_MASTER_UCINET-5.txt",na.strings=9, sep = ";", dec=",", row.names=1, col.names=c("row.nameS", "Daniel", "Liga", "Shengye", "Valentina") , skip=54, nrows=4, check.names=FALSE), stringsAsFactors=TRUE)
)

alpheus<-list(
#Alpehus t1
alp_val1<-as.matrix(read.csv("data/ae_teamdynamics_MASTER_UCINET-6.txt",na.strings=9, sep = ";", dec=",", row.names=1, col.names=c("row.nameS", "Sarah", "Harmke", "Sybil", "Sanne") , skip=4, nrows=4, check.names=FALSE), stringsAsFactors=TRUE),
alp_is1<-as.matrix(read.csv("data/ae_teamdynamics_MASTER_UCINET-6.txt",na.strings=9, sep = ";", dec=",", row.names=1, col.names=c("row.nameS", "Sarah", "Harmke", "Sybil", "Sanne") , skip=14, nrows=4, check.names=FALSE), stringsAsFactors=TRUE),
#Alpehus t2
alp_val2<-as.matrix(read.csv("data/ae_teamdynamics_MASTER_UCINET-6.txt",na.strings=9, sep = ";", dec=",", row.names=1, col.names=c("row.nameS", "Sarah", "Harmke", "Sybil", "Sanne") , skip=24, nrows=4, check.names=FALSE), stringsAsFactors=TRUE),
alp_is2<-as.matrix(read.csv("data/ae_teamdynamics_MASTER_UCINET-6.txt",na.strings=9, sep = ";", dec=",", row.names=1, col.names=c("row.nameS", "Sarah", "Harmke", "Sybil", "Sanne") , skip=34, nrows=4, check.names=FALSE), stringsAsFactors=TRUE),
#Alpehus t3
alp_val3<-as.matrix(read.csv("data/ae_teamdynamics_MASTER_UCINET-6.txt",na.strings=9, sep = ";", dec=",", row.names=1, col.names=c("row.nameS", "Sarah", "Harmke", "Sybil", "Sanne") , skip=44, nrows=4, check.names=FALSE), stringsAsFactors=TRUE),
alp_is3<-as.matrix(read.csv("data/ae_teamdynamics_MASTER_UCINET-6.txt",na.strings=9, sep = ";", dec=",", row.names=1, col.names=c("row.nameS", "Sarah", "Harmke", "Sybil", "Sanne") , skip=54, nrows=4, check.names=FALSE), stringsAsFactors=TRUE)
)

hht<-list(
#hht T1
hht_val1<-as.matrix(read.csv("data/ae_teamdynamics_MASTER_UCINET-7.txt",na.strings=9, sep = ";", dec=",", row.names=1, col.names=c("row.nameS", "Anja","Johanna","Erika","Esmina","Saulius") , skip=5, nrows=5, check.names=FALSE), stringsAsFactors=TRUE),
hht_is1<-as.matrix(read.csv("data/ae_teamdynamics_MASTER_UCINET-7.txt",na.strings=9, sep = ";", dec=",", row.names=1, col.names=c("row.nameS", "Anja","Johanna","Erika","Esmina","Saulius") , skip=17, nrows=5, check.names=FALSE), stringsAsFactors=TRUE),
#hht T2
hht_val2<-as.matrix(read.csv("data/ae_teamdynamics_MASTER_UCINET-7.txt",na.strings=9, sep = ";", dec=",", row.names=1, col.names=c("row.nameS", "Anja","Johanna","Erika","Esmina","Saulius") , skip=29, nrows=5, check.names=FALSE), stringsAsFactors=TRUE),
hht_is2<-as.matrix(read.csv("data/ae_teamdynamics_MASTER_UCINET-7.txt",na.strings=9, sep = ";", dec=",", row.names=1, col.names=c("row.nameS", "Anja","Johanna","Erika","Esmina","Saulius") , skip=41, nrows=5, check.names=FALSE), stringsAsFactors=TRUE),
#hht T3
hht_val3<-as.matrix(read.csv("data/ae_teamdynamics_MASTER_UCINET-7.txt",na.strings=9, sep = ";", dec=",", row.names=1, col.names=c("row.nameS", "Anja","Johanna","Erika","Esmina","Saulius") , skip=53, nrows=5, check.names=FALSE), stringsAsFactors=TRUE),
hht_is3<-as.matrix(read.csv("data/ae_teamdynamics_MASTER_UCINET-7.txt",na.strings=9, sep = ";", dec=",", row.names=1, col.names=c("row.nameS", "Anja","Johanna","Erika","Esmina","Saulius") , skip=65, nrows=5, check.names=FALSE), stringsAsFactors=TRUE)
)

Actor attributes

attributes<-read.csv("data/attributes_article.csv", header=TRUE, row.names=1)
ae_att<-subset(attributes, team =="adult education")
alp_att<-subset(attributes, team =="alpheus")
hht_att<-subset(attributes, team =="hht")

Now that we have the data we need to prepare it. The network variables are valued ranging from 2 (rarely for information retrieval and strongly disagree for valuing) to 6 (very frequent for information retrieval and strongly agree for valuing). While it is possible to do SAOM with valued data I did the simpler route and dichotomized my networks.

Below we define a simple function dicoGT4 that takes a matrix and changes all values above 4 to 1 and the other values to 0. We apply this function to our networks. As we have stored them in a list, this is done in 1 line, instead of 18 lines (3 (for each team) x 3 (for each wave of data) X 2 (for each network variable))

dichoGT4<-function(m){(m>4)+ 0}
             
alpheusgt4<-lapply(alpheus, dichoGT4)
adulteducgt4<-lapply(adulteduc, dichoGT4)
hhtgt4<-lapply(hht, dichoGT4)

Creating SAOM variables

Now we have our variables and we are ready to create siena variables. These are necessary to tell the program RSiena which variables are dependent (sienanet) and which are independent. Independent variables can be dyadic covariates (varDyadCovar) or individual covariates (coCovar). The covariates can be changing or static. In my case they were static, meaning that they did not change between data collection periods. Once this is done, the last step is to put it all together and tell the program which variables belong to which team.

Remember that we loaded our variables for each team as a list. When you have a list, you need to include two square brackets [[ ]] to get to the content of the list. Imagine a list like an excel file with each list item as an excel sheet. The dim variable indicates how many actors are in the network (5) and how many time periods (3).

ae_is <- sienaNet(array(c(adulteducgt4[[2]],adulteducgt4[[4]],adulteducgt4[[6]]), dim=c(4,4,3)), allowOnly=FALSE) 
alp_is <-sienaNet(array(c(alpheusgt4[[2]],alpheusgt4[[4]],alpheusgt4[[6]]), dim=c(4,4,3)), allowOnly=FALSE)
hht_is <-sienaNet(array(c(hhtgt4[[2]],hhtgt4[[4]],hhtgt4[[6]]), dim=c(5,5,3)), allowOnly=FALSE)

ae_val <- varDyadCovar(array(c(adulteduc[[1]], adulteduc[[3]]), dim=c(4,4,2)))
alp_val <-varDyadCovar(array(c(alpheus[[1]], alpheus[[3]]), dim=c(4,4,2)))
hht_val <-varDyadCovar(array(c(hht[[1]], hht[[3]]), dim=c(5,5,2)))

ae_ae<-coCovar(ae_att$aev2)
alp_ae<-coCovar(alp_att$aev2)
hht_ae<-coCovar(hht_att$aev2)

Let’s create the groups!

group.1<- sienaDataCreate(IS = ae_is, 
                          val=ae_val,
                          ae = ae_ae
                          )

group.2<- sienaDataCreate(IS = alp_is, 
                          val=alp_val,
                          ae = alp_ae
                          )

group.3<- sienaDataCreate(IS = hht_is, 
                          val = hht_val,
                          ae = hht_ae)

Running a basic SAOM Model

We will now begin with running a basic model. This will be our null model and only contains the most basic effects you can think off. To have good convergence, use theory and exploration of your data to consider what network structures could explain your network. Similar to running an ERGM this is a bit of try and error (or an art as I heard other people say). You should have a look at the extensive documentation of network effects. Of course, you can also create your own network effects, interactions between variables.

sienaGroupCreate creates the groups. It just puts them together. The model we are using will have a random intercept for each group, but a fixed slope. getEffects creates an object with the theoretical network structures for our groups. coevalgo The file coeveffect.html provides an overview of all the effects and their naming. It contains more effects that are available to you right now, as it is based on the complete data set.

ir <- sienaGroupCreate(list(group.1, group.2, group.3))
ir_effect <- getEffects(ir)
ir_algo<-sienaAlgorithmCreate(projname = "InfoRetrieval", maxlike=TRUE, mult=6)
#get initial description
print01Report(ir, modelname = 'InfoRetrieval')

The last line in the code above prints a report about your data. It contains some basic statistics (e.g., mean).

We will begin by adding some variables to our model. This is done by adding effects to our effect object ir_effect. We begin by changing reciprocity (recip) from a fixed effect to a random effect.

ir_effect <- setEffect(ir_effect, recip, random=T)
##   effectName  include fix   test  initialValue parm
## 1 reciprocity TRUE    FALSE FALSE          0   0

The model is based on Bayesian analysis. This is beyond the scope of this workshop. Focusing on but-what-do-I-do-with you can leave the values for fix, test, initialValue, and parm untouched (for now). You can type ?setEffect to get information about the different options.

Then we add the variable valuing by stating its name (interaction1 = “val”) and that we want to know how it impacts the creation, maintenance, or dissolution of ties (type = “eval”). You can also only test the impact of a variable on the creation (creation) and/or maintenance (endow) of ties. X indicates the network for which the effects are included. We do the same for the variable adaptive expertise. Here, we say that this variable impacts the position of the ego, and hence add egoX and not X. Finally, we are checking if all is ok b asking R to print the effects.

ir_effect <- includeEffects(ir_effect, X, interaction1= "val", type="eval")
##   effectName include fix   test  initialValue parm
## 1 val        TRUE    FALSE FALSE          0   0
ir_effect <- includeEffects(ir_effect,egoX, interaction1= "ae", type="eval")
##   effectName include fix   test  initialValue parm
## 1 ae ego     TRUE    FALSE FALSE          0   0
print(ir_effect, includeRandoms=T)
##    effectName                  include fix   test  initialValue parm
## 1  constant IS rate (period 1) TRUE    FALSE FALSE    4.36923   0   
## 2  constant IS rate (period 2) TRUE    FALSE FALSE    0.67692   0   
## 3  constant IS rate (period 4) TRUE    FALSE FALSE    2.48000   0   
## 4  constant IS rate (period 5) TRUE    FALSE FALSE    1.90769   0   
## 5  constant IS rate (period 7) TRUE    FALSE FALSE    3.85714   0   
## 6  constant IS rate (period 8) TRUE    FALSE FALSE    1.63158   0   
## 7  outdegree (density)         TRUE    FALSE FALSE   -0.39226   0   
## 8  reciprocity                 TRUE    FALSE FALSE    0.00000   0   
## 9  val                         TRUE    FALSE FALSE    0.00000   0   
## 10 ae ego                      TRUE    FALSE FALSE    0.00000   0   
##    randomEffects
## 1  FALSE        
## 2  FALSE        
## 3  FALSE        
## 4  FALSE        
## 5  FALSE        
## 6  FALSE        
## 7   TRUE        
## 8   TRUE        
## 9  FALSE        
## 10 FALSE        
## Dimensions of priorMu and priorSigma for sienaBayes should be 2 + 2 = 4 .

The output shows the variables we are including. We assume that density and reciprocity vary between groups. The effect of valuing and adaptive expertise is the same across teams.

Now that the model is specified we can run it. This is done by using sienaBayes. You can change a lot of the parameters for running the algorithms. Higher numbers for nwarm, nmain, nrunMHBatches will give you more accurate results, but will also increase the computation times. So, be careful how you change them. nbrNodes indicates the number of processes to use on your CPU.

The first line fit1 <- sienaBayes(...) contains all the information to run the model. In the following line we are asking R to return the model and then we save it all in a text file called results_of_model.txt. This is done with an opening statement sink(filename) and a closing statement (sink()). We are appending the current results to the file. If you are running several models and want to keep track of the results this might be helpful. Without append =T you will overwrite the file.

The parameters used in this sienaBayes call are not the ones I used in my analysis. All the values are lowered for the workshop. The original values I used were sienaBayes(coevalgo, data=coev, effects=coeveffect, nwarm=100, nmain=50000, nrunMHBatches=20, initgainGroupwise=0, initgainGlobal=0, silentstart=TRUE, nbrNodes=18). Running the model below takes a short time (64.259 seconds). Running the same model using all teams takes a bit longer (1481.995 seconds).

fit1 <- sienaBayes(ir_algo, data=ir, effects=ir_effect, nwarm=10, nmain=25, nrunMHBatches=10)
## 
## Estimate initial global parameters
## Initial global estimates
## Estimates, standard errors and convergence t-ratios
## 
##                                        Estimate   Standard   Convergence 
##                                                     Error      t-ratio   
##    1. rate constant IS rate (period 1) 93.1228  (   1.2136 )   -2.6285   
##    2. rate constant IS rate (period 2)  0.7178  (   0.9573 )    0.0640   
##    3. rate constant IS rate (period 4) 50.3232  ( 187.0963 )   -1.2088   
##    4. rate constant IS rate (period 5) 10.5093  (  56.8863 )   -0.0842   
##    5. rate constant IS rate (period 7) 18.8642  (  50.3810 )   -0.2459   
##    6. rate constant IS rate (period 8)  1.8090  (   1.5922 )    0.0338   
##    7. eval outdegree (density)         -1.9566  (   0.7983 )   -1.0219   
##    8. eval reciprocity                  1.7836  (   0.9138 )   -0.5054   
##    9. eval val                          2.4320  (   1.0780 )    1.1356   
##   10. eval ae ego                      -0.6070  (   1.3579 )    0.1046   
## 
## Overall maximum convergence ratio:    3.5292 
## 
## 
## Total of 1661 iteration steps.
## 
## 
## 
## maximum initial global estimate is  93.12278 
## Group 1 
## Estimate initial parameters group 1 
## 
## Initial estimate obtained
##  100.772 0.768 0.301 0.135 2.432 -0.607 
## Group 2 
## Estimate initial parameters group 2 
## 
## Initial estimate obtained
##  58.174 5.090 -2.309 -0.973 2.432 -0.607 
## Group 3 
## Estimate initial parameters group 3 
## 
## Initial estimate obtained
##  18.666 1.953 -1.975 1.920 2.432 -0.607 
## Condition priorRatesFromData=2 impossible, changed to 1.
## Initial global model estimates
## Estimates, standard errors and convergence t-ratios
## 
##                                        Estimate   Standard   Convergence 
##                                                     Error      t-ratio   
##    1. rate constant IS rate (period 1) 93.1228  (   1.2136 )   -2.6285   
##    2. rate constant IS rate (period 2)  0.7178  (   0.9573 )    0.0640   
##    3. rate constant IS rate (period 4) 50.3232  ( 187.0963 )   -1.2088   
##    4. rate constant IS rate (period 5) 10.5093  (  56.8863 )   -0.0842   
##    5. rate constant IS rate (period 7) 18.8642  (  50.3810 )   -0.2459   
##    6. rate constant IS rate (period 8)  1.8090  (   1.5922 )    0.0338   
##    7. eval outdegree (density)         -1.9566  (   0.7983 )   -1.0219   
##    8. eval reciprocity                  1.7836  (   0.9138 )   -0.5054   
##    9. eval val                          2.4320  (   1.0780 )    1.1356   
##   10. eval ae ego                      -0.6070  (   1.3579 )    0.1046   
## 
## Overall maximum convergence ratio:    3.5292 
## 
## 
## Total of 1661 iteration steps.
## 
## 6.097 
## improveMH
## Desired acceptances 25 .
## ..........
##  1 .           36.7  43.3  11.2  14.6  18.7 
##  multipliers   2.000 2.000 0.500 0.500 0.854 
##  scaleFactors  1.667 1.667 0.417 0.417 0.711 
## ..........
##  2 .            7.0  27.4  16.9   8.0   9.4 
##  multipliers   0.500 1.046 0.843 0.500 0.697 
##  scaleFactors  0.833 1.744 0.351 0.208 0.496 
## ..........
##  3 .            6.6  31.2  16.5  12.3   8.6 
##  multipliers   0.500 1.110 0.851 0.500 0.713 
##  scaleFactors  0.417 1.935 0.299 0.104 0.353 
## ..........
##  4 .           11.4  29.3  20.0  14.5   7.1 
##  multipliers   0.500 1.070 0.919 0.500 0.707 
##  scaleFactors  0.208 2.070 0.275 0.052 0.250 
## ..........
##  5 .           25.5  28.8  22.3  10.9  17.1 
##  multipliers   1.008 1.058 0.958 0.500 0.878 
##  scaleFactors  0.210 2.190 0.263 0.026 0.220 
## ..........
##  6 .           24.9  27.8  24.3  16.8  12.7 
##  multipliers   0.999 1.042 0.990 0.879 0.818 
##  scaleFactors  0.210 2.281 0.260 0.023 0.180 
## ..........
##  7 .           23.6  32.5  24.6  15.9  14.5 
##  multipliers   0.980 1.107 0.995 0.871 0.851 
##  scaleFactors  0.206 2.525 0.259 0.020 0.153 
## ..........
##  8 .           24.6  28.4  20.2  17.6  19.3 
##  multipliers   0.994 1.047 0.934 0.899 0.922 
##  scaleFactors  0.204 2.644 0.242 0.018 0.141 
## ..........
##  9 .           22.7  26.6  21.5  13.2  18.9 
##  multipliers   0.970 1.021 0.953 0.842 0.918 
##  scaleFactors  0.198 2.699 0.231 0.015 0.129 
## ..........
##  10 .           26.6  28.8  22.5  14.9  16.8 
##  multipliers   1.021 1.049 0.967 0.868 0.894 
##  scaleFactors  0.202 2.831 0.223 0.013 0.116 
## ..........
##  11 .           24.4  30.8  22.1  18.5  23.9 
##  multipliers   0.993 1.073 0.963 0.918 0.986 
##  scaleFactors  0.201 3.039 0.215 0.012 0.114 
## ..........
##  12 .           23.5  30.1  27.0  20.2  23.4 
##  multipliers   0.981 1.063 1.024 0.940 0.980 
##  scaleFactors  0.197 3.232 0.220 0.011 0.112 
## ..........
##  13 .           22.2  26.8  26.0  19.3  21.9 
##  multipliers   0.966 1.021 1.012 0.930 0.962 
##  scaleFactors  0.190 3.301 0.223 0.011 0.108 
## ..........
##  14 .           20.6  23.2  25.2  17.7  17.8 
##  multipliers   0.947 0.978 1.002 0.913 0.914 
##  scaleFactors  0.180 3.229 0.223 0.010 0.098 
## ..........
##  15 .           21.7  23.9  27.3  19.9  21.8 
##  multipliers   0.962 0.987 1.027 0.940 0.963 
##  scaleFactors  0.173 3.187 0.229 0.009 0.095 
## ..........
##  16 .           24.9  26.4  25.5  20.8  19.7 
##  multipliers   0.998 1.016 1.006 0.951 0.939 
##  scaleFactors  0.173 3.237 0.230 0.009 0.089 
## fine tuning took  16  iterations.
## improveMH 31.967 seconds.
## .Warming step 1 ( 10 )
## Accepts  8 / 30 
## .Warming step 2 ( 10 )
## Accepts  20 / 30 
## .Warming step 3 ( 10 )
## Accepts  9 / 30 
## .Warming step 4 ( 10 )
## Accepts  12 / 30 
## .Warming step 5 ( 10 )
## Accepts  14 / 30 
## .Warming step 6 ( 10 )
## Accepts  12 / 30 
## .Warming step 7 ( 10 )
## Accepts  11 / 30 
## .Warming step 8 ( 10 )
## Accepts  9 / 30 
## .Warming step 9 ( 10 )
## Accepts  11 / 30 
## .Warming step 10 ( 10 )
## Accepts  9 / 30 
## [1] "end of warming"
## warming took 2.221 seconds.
## Parameter values after warming up
## 1 .    103.170      1.215      0.865     -0.743      2.535     -0.602 
## 2 .      6.010      5.750     -1.711      2.105      2.535     -0.602 
## 3 .     18.493      2.440     -1.470      1.245      2.535     -0.602 
## 
## Second improveMH
## Desired acceptances 25 .
## ..........
##  1 .           26.0   8.0  23.3  16.5  24.9 
##  multipliers   1.022 0.500 0.960 0.803 0.997 
##  scaleFactors  0.177 1.619 0.221 0.007 0.089 
## ..........
##  2 .           24.8  12.8  25.9  23.4  24.2 
##  multipliers   0.996 0.500 1.018 0.968 0.984 
##  scaleFactors  0.176 0.809 0.225 0.007 0.087 
## ..........
##  3 .           25.5  17.4  24.3  22.2  24.1 
##  multipliers   1.009 0.867 0.987 0.951 0.983 
##  scaleFactors  0.178 0.702 0.222 0.006 0.086 
## ..........
##  4 .           24.3  20.4  21.4  21.3  24.9 
##  multipliers   0.988 0.925 0.941 0.939 0.999 
##  scaleFactors  0.176 0.649 0.209 0.006 0.086 
## ..........
##  5 .           25.9  20.0  23.2  21.3  25.1 
##  multipliers   1.013 0.922 0.972 0.943 1.002 
##  scaleFactors  0.178 0.598 0.203 0.006 0.086 
## ..........
##  6 .           28.7  24.6  23.8  23.2  23.8 
##  multipliers   1.055 0.994 0.982 0.974 0.982 
##  scaleFactors  0.188 0.595 0.200 0.005 0.084 
## fine tuning took  6  iterations.
## Second improveMH 12.167 seconds.
## .main 11 ( 35 )
## Mu =  81.201 5.756 -1.219 0.778 
## Eta =  2.768 -1.488 
## Sigma = 
##           [,1]    [,2]     [,3]    [,4]
## [1,] 1869.2264  2.0198 -21.4987  3.7522
## [2,]    2.0198 47.2620  -9.3547  6.5748
## [3,]  -21.4987 -9.3547   3.1967 -1.8047
## [4,]    3.7522  6.5748  -1.8047  1.9659
## 
## main 11 ( 35 )  Accepts  14 / 30 
## .main 12 ( 35 )
## Mu =  -33.215 13.346 -2.963 2.596 
## Eta =  2.592 -1.122 
## Sigma = 
##           [,1]      [,2]     [,3]     [,4]
## [1,] 3905.6117 -340.9069  58.0555 -12.6361
## [2,] -340.9069   81.5868 -10.8664   0.1105
## [3,]   58.0555  -10.8664   4.6412  -2.6827
## [4,]  -12.6361    0.1105  -2.6827   3.0790
## 
## main 12 ( 35 )  Accepts  15 / 30 
## .main 13 ( 35 )
## Mu =  58.787 8.268 -0.78 0.775 
## Eta =  2.537 -0.815 
## Sigma = 
##           [,1]    [,2]    [,3]    [,4]
## [1,] 4914.7697 28.1615  3.6304 -8.6716
## [2,]   28.1615 11.5070  0.2936  1.0173
## [3,]    3.6304  0.2936  0.9846 -0.5584
## [4,]   -8.6716  1.0173 -0.5584  1.6819
## 
## main 13 ( 35 )  Accepts  16 / 30 
## .main 14 ( 35 )
## Mu =  34.882 12.142 -0.986 0.736 
## Eta =  2.41 -0.088 
## Sigma = 
##           [,1]      [,2]    [,3]     [,4]
## [1,] 3405.9031 -310.6468  2.9806 -46.6372
## [2,] -310.6468   44.1493 -1.7558   5.1952
## [3,]    2.9806   -1.7558  1.1129   0.1187
## [4,]  -46.6372    5.1952  0.1187   1.3243
## 
## main 14 ( 35 )  Accepts  9 / 30 
## .main 15 ( 35 )
## Mu =  87.693 9.856 -0.34 -0.054 
## Eta =  2.16 -0.196 
## Sigma = 
##           [,1]      [,2]    [,3]     [,4]
## [1,] 5956.1047 -172.4201 18.0112 -48.8451
## [2,] -172.4201   23.6306 -0.6248   2.6485
## [3,]   18.0112   -0.6248  1.2120  -0.2510
## [4,]  -48.8451    2.6485 -0.2510   0.8478
## 
## main 15 ( 35 )  Accepts  13 / 30 
## .main 16 ( 35 )
## Mu =  10.241 8.19 0.483 1.277 
## Eta =  2.35 -0.194 
## Sigma = 
##          [,1]     [,2]   [,3]    [,4]
## [1,] 2628.703 -143.449 19.350 -39.676
## [2,] -143.449   29.122 -4.579   4.155
## [3,]   19.350   -4.579  2.952  -0.263
## [4,]  -39.676    4.155 -0.263   2.194
## 
## main 16 ( 35 )  Accepts  10 / 30 
## .main 17 ( 35 )
## Mu =  40.082 10.984 -0.404 0.487 
## Eta =  2.178 0.086 
## Sigma = 
##          [,1]     [,2]   [,3]    [,4]
## [1,] 2687.377 -132.389 46.254 -31.556
## [2,] -132.389   27.661 -1.860   2.162
## [3,]   46.254   -1.860  2.999  -0.823
## [4,]  -31.556    2.162 -0.823   0.921
## 
## main 17 ( 35 )  Accepts  19 / 30 
## .main 18 ( 35 )
## Mu =  45.254 6.252 0.87 0.096 
## Eta =  2.4 0.107 
## Sigma = 
##          [,1]    [,2]   [,3]    [,4]
## [1,] 3300.920 -22.112 31.726 -46.111
## [2,]  -22.112  21.025 -0.590   2.059
## [3,]   31.726  -0.590  1.825  -0.959
## [4,]  -46.111   2.059 -0.959   1.371
## 
## main 18 ( 35 )  Accepts  6 / 30 
## .main 19 ( 35 )
## Mu =  37.535 10.67 -0.068 0.384 
## Eta =  2.313 0.367 
## Sigma = 
##          [,1]    [,2]   [,3]   [,4]
## [1,] 2762.042 129.232 11.771 52.015
## [2,]  129.232  91.863 -0.785  9.468
## [3,]   11.771  -0.785  0.828  0.036
## [4,]   52.015   9.468  0.036  2.949
## 
## main 19 ( 35 )  Accepts  11 / 30 
## .main 20 ( 35 )
## Mu =  52.424 11.413 -0.714 1.125 
## Eta =  2.423 -0.084 
## Sigma = 
##          [,1]    [,2]   [,3]    [,4]
## [1,] 2766.044 -85.631 39.458 -29.080
## [2,]  -85.631  28.639 -3.896   4.707
## [3,]   39.458  -3.896  2.588  -1.538
## [4,]  -29.080   4.707 -1.538   1.565
## 
## main 20 ( 35 )  Accepts  8 / 30 
## .main 21 ( 35 )
## Mu =  3.291 8.449 -0.727 1.001 
## Eta =  2.511 0.374 
## Sigma = 
##          [,1]    [,2]   [,3]    [,4]
## [1,] 1692.536 -31.797 31.636 -21.958
## [2,]  -31.797  16.573  1.997   1.300
## [3,]   31.636   1.997  2.650  -0.949
## [4,]  -21.958   1.300 -0.949   1.604
## 
## main 21 ( 35 )  Accepts  15 / 30 
## .main 22 ( 35 )
## Mu =  32.987 7.774 -0.591 0.623 
## Eta =  2.044 0.587 
## Sigma = 
##          [,1]    [,2]   [,3]   [,4]
## [1,] 2508.468  45.984 49.969  9.243
## [2,]   45.984 154.522 -9.660 10.368
## [3,]   49.969  -9.660  3.319 -0.369
## [4,]    9.243  10.368 -0.369  1.697
## 
## main 22 ( 35 )  Accepts  16 / 30 
## .main 23 ( 35 )
## Mu =  -8.756 8.382 -1.467 -0.842 
## Eta =  2.214 -0.133 
## Sigma = 
##          [,1]     [,2]   [,3]   [,4]
## [1,] 3644.732 -146.185 16.416 16.907
## [2,] -146.185   26.893 -4.773  3.757
## [3,]   16.416   -4.773  3.460 -1.282
## [4,]   16.907    3.757 -1.282  2.295
## 
## main 23 ( 35 )  Accepts  14 / 30 
## .main 24 ( 35 )
## Mu =  29.687 9.352 -0.551 0.634 
## Eta =  2.194 0.058 
## Sigma = 
##          [,1]     [,2]   [,3]    [,4]
## [1,] 7007.435 -311.767 42.138 -46.920
## [2,] -311.767   30.126 -1.904   4.558
## [3,]   42.138   -1.904  1.229   0.194
## [4,]  -46.920    4.558  0.194   1.476
## 
## main 24 ( 35 )  Accepts  13 / 30 
## .main 25 ( 35 )
## Mu =  59.854 8.98 -0.309 1.105 
## Eta =  1.98 0.346 
## Sigma = 
##          [,1]    [,2]   [,3]   [,4]
## [1,] 1444.813 -31.792 13.343  2.888
## [2,]  -31.792  17.134 -2.865  0.583
## [3,]   13.343  -2.865  2.251 -0.199
## [4,]    2.888   0.583 -0.199  1.061
## 
## main 25 ( 35 )  Accepts  8 / 30 
## .main 26 ( 35 )
## Mu =  71.453 5.812 -0.463 -1.582 
## Eta =  2.171 0.606 
## Sigma = 
##          [,1]     [,2]   [,3]    [,4]
## [1,] 1700.553 -149.779 17.981 -15.509
## [2,] -149.779   30.562 -3.077   2.388
## [3,]   17.981   -3.077  1.355   0.901
## [4,]  -15.509    2.388  0.901   3.102
## 
## main 26 ( 35 )  Accepts  8 / 30 
## .main 27 ( 35 )
## Mu =  109.491 6.985 -0.817 -1.277 
## Eta =  2.108 0.561 
## Sigma = 
##          [,1]     [,2]   [,3]    [,4]
## [1,] 3376.192 -125.284  4.013 -78.795
## [2,] -125.284   36.217 -3.513   4.231
## [3,]    4.013   -3.513  1.432  -0.030
## [4,]  -78.795    4.231 -0.030   3.353
## 
## main 27 ( 35 )  Accepts  17 / 30 
## .main 28 ( 35 )
## Mu =  42.848 6.051 0.407 0.657 
## Eta =  2.122 0.528 
## Sigma = 
##          [,1]    [,2]   [,3]  [,4]
## [1,] 1811.955 -64.213 30.304 0.232
## [2,]  -64.213  23.769 -1.366 2.378
## [3,]   30.304  -1.366  2.327 1.307
## [4,]    0.232   2.378  1.307 2.217
## 
## main 28 ( 35 )  Accepts  11 / 30 
## .main 29 ( 35 )
## Mu =  30.561 8.487 -1.518 1.277 
## Eta =  2.225 0.772 
## Sigma = 
##          [,1]    [,2]   [,3]   [,4]
## [1,] 5776.992 -49.048  5.684  3.893
## [2,]  -49.048  21.078 -3.684  5.545
## [3,]    5.684  -3.684  1.455 -0.179
## [4,]    3.893   5.545 -0.179  4.964
## 
## main 29 ( 35 )  Accepts  5 / 30 
## .main 30 ( 35 )
## Mu =  17.953 10.24 -0.04 0.731 
## Eta =  2.254 0.585 
## Sigma = 
##          [,1]     [,2]   [,3]    [,4]
## [1,] 5384.783 -243.235 12.103 -41.626
## [2,] -243.235   28.776 -0.610   2.743
## [3,]   12.103   -0.610  1.129   0.147
## [4,]  -41.626    2.743  0.147   1.198
## 
## main 30 ( 35 )  Accepts  15 / 30 
## 
## Mu =  17.953 10.24 -0.04 0.731 
## Eta =  2.254 0.585 
## Sigma = 
##          [,1]     [,2]   [,3]    [,4]
## [1,] 5384.783 -243.235 12.103 -41.626
## [2,] -243.235   28.776 -0.610   2.743
## [3,]   12.103   -0.610  1.129   0.147
## [4,]  -41.626    2.743  0.147   1.198
## 
## .main 31 ( 35 )
## Mu =  90.334 -0.951 -2.189 -0.805 
## Eta =  2.165 0.659 
## Sigma = 
##          [,1]     [,2]    [,3]   [,4]
## [1,] 1384.511 -132.298 -13.256 -7.712
## [2,] -132.298   36.870   5.514  5.309
## [3,]  -13.256    5.514   1.793  0.744
## [4,]   -7.712    5.309   0.744  1.807
## 
## main 31 ( 35 )  Accepts  6 / 30 
## .main 32 ( 35 )
## Mu =  -23.928 11.301 -2.327 0.038 
## Eta =  2.165 0.751 
## Sigma = 
##          [,1]     [,2]   [,3]   [,4]
## [1,] 4202.259 -225.450 49.362 14.915
## [2,] -225.450   44.071 -7.786 -0.324
## [3,]   49.362   -7.786  2.243 -0.196
## [4,]   14.915   -0.324 -0.196  0.937
## 
## main 32 ( 35 )  Accepts  12 / 30 
## .main 33 ( 35 )
## Mu =  17.013 5.95 -0.664 0.135 
## Eta =  2.329 0.243 
## Sigma = 
##          [,1]     [,2]    [,3]    [,4]
## [1,] 3801.569 -230.105 107.876 -15.790
## [2,] -230.105   82.728 -15.980  16.008
## [3,]  107.876  -15.980   6.964  -1.518
## [4,]  -15.790   16.008  -1.518   4.265
## 
## main 33 ( 35 )  Accepts  12 / 30 
## .main 34 ( 35 )
## Mu =  22.213 3.405 0.039 0.464 
## Eta =  2.004 0.492 
## Sigma = 
##          [,1]   [,2]   [,3]    [,4]
## [1,] 1669.458 -9.811 -3.937 -12.784
## [2,]   -9.811 39.558 -1.896   4.535
## [3,]   -3.937 -1.896  1.365  -0.362
## [4,]  -12.784  4.535 -0.362   1.178
## 
## main 34 ( 35 )  Accepts  11 / 30 
## .main 35 ( 35 )
## Mu =  32.794 8.961 -0.123 0.816 
## Eta =  2.118 0.027 
## Sigma = 
##          [,1]   [,2]   [,3]   [,4]
## [1,] 1514.405  2.271 12.245 -4.115
## [2,]    2.271 37.364  4.130  6.461
## [3,]   12.245  4.130  1.472  0.589
## [4,]   -4.115  6.461  0.589  1.623
## 
## main 35 ( 35 )  Accepts  15 / 30 
## Total duration 58.599 seconds.

Of course, we want to see the results of the model. To do this, we have to modify the print.sienaBayes function as NA’s have crept into the output. In the function print.sienaBayes the parameters are rounded, which doesn’t work if a vector has numbers and NA. This is not recognized as a numeric vector but as a character vector, which the round function doesn’t accept. We will load the functions below, which will override the print function we loaded with the package. An alternative is to rename the function.

source("sienaprint_modified.R", echo=F)
fit1
## Note: this summary does not contain a convergence check.
## 
## Groups:
##  Data1   Data2   Data3   
## 
## Posterior means and standard deviations for global mean parameters
## 
## Total number of runs in the results is  35 .
## Posterior means and standard deviations are averages over 25 MCMC runs (counted after thinning).
## 
##                                        Post.      Post.       cred.    cred.   p      varying  Post.    cred.   cred.   
##                                        mean       s.d.m.      from     to                      s.d.     from    to      
##    1. rate constant IS rate (period 1) 103.0817 ( 0.4500   )                                       NA       NA      NA  
##    2. rate constant IS rate (period 2)   0.4749 ( 0.3089   )                                       NA       NA      NA  
##    3. rate constant IS rate (period 4)   9.1526 ( 1.1457   )                                       NA       NA      NA  
##    4. rate constant IS rate (period 5)   4.3652 ( 0.8597   )                                       NA       NA      NA  
##    5. rate constant IS rate (period 7)  19.0851 ( 0.3805   )                                       NA       NA      NA  
##    6. rate constant IS rate (period 8)   3.8882 ( 0.4840   )                                       NA       NA      NA  
##    7. eval outdegree (density)          -0.6985 ( 0.8870   ) -2.5816  0.6379  0.16       +     1.5071   0.9601  2.3601  
##    8. eval reciprocity                   0.4469 ( 0.8848   ) -1.3993  1.8048  0.80       +     1.4237   0.9442  2.1318  
##    9. eval val                           2.2694 ( 0.1930   )  1.9940  2.6623  1.00       -         NA       NA      NA  
##   10. eval ae ego                        0.1211 ( 0.5715   ) -1.2686  0.7593  0.68       -         NA       NA      NA  
## 
## Posterior mean of global covariance matrix (varying parameters)
## 3244.6945 -110.0260  23.4247 -16.1832
## -110.0260  41.3075  -3.1796   4.3175
##  23.4247  -3.1796   2.2713  -0.3971
## -16.1832   4.3175  -0.3971   2.0270
## 
## Posterior standard deviations of elements of global covariance matrix
## 1578.0979 120.9573  26.8092  27.7503
## 120.9573  31.2598   4.7150   3.5884
##  26.8092   4.7150   1.3684   0.9046
##  27.7503   3.5884   0.9046   1.0576
sink("results_of_model.txt", append=T)
fit1
## Note: this summary does not contain a convergence check.
## 
## Groups:
##  Data1   Data2   Data3   
## 
## Posterior means and standard deviations for global mean parameters
## 
## Total number of runs in the results is  35 .
## Posterior means and standard deviations are averages over 25 MCMC runs (counted after thinning).
## 
##                                        Post.      Post.       cred.    cred.   p      varying  Post.    cred.   cred.   
##                                        mean       s.d.m.      from     to                      s.d.     from    to      
##    1. rate constant IS rate (period 1) 103.0817 ( 0.4500   )                                       NA       NA      NA  
##    2. rate constant IS rate (period 2)   0.4749 ( 0.3089   )                                       NA       NA      NA  
##    3. rate constant IS rate (period 4)   9.1526 ( 1.1457   )                                       NA       NA      NA  
##    4. rate constant IS rate (period 5)   4.3652 ( 0.8597   )                                       NA       NA      NA  
##    5. rate constant IS rate (period 7)  19.0851 ( 0.3805   )                                       NA       NA      NA  
##    6. rate constant IS rate (period 8)   3.8882 ( 0.4840   )                                       NA       NA      NA  
##    7. eval outdegree (density)          -0.6985 ( 0.8870   ) -2.5816  0.6379  0.16       +     1.5071   0.9601  2.3601  
##    8. eval reciprocity                   0.4469 ( 0.8848   ) -1.3993  1.8048  0.80       +     1.4237   0.9442  2.1318  
##    9. eval val                           2.2694 ( 0.1930   )  1.9940  2.6623  1.00       -         NA       NA      NA  
##   10. eval ae ego                        0.1211 ( 0.5715   ) -1.2686  0.7593  0.68       -         NA       NA      NA  
## 
## Posterior mean of global covariance matrix (varying parameters)
## 3244.6945 -110.0260  23.4247 -16.1832
## -110.0260  41.3075  -3.1796   4.3175
##  23.4247  -3.1796   2.2713  -0.3971
## -16.1832   4.3175  -0.3971   2.0270
## 
## Posterior standard deviations of elements of global covariance matrix
## 1578.0979 120.9573  26.8092  27.7503
## 120.9573  31.2598   4.7150   3.5884
##  26.8092   4.7150   1.3684   0.9046
##  27.7503   3.5884   0.9046   1.0576
sink()

Convergence Test

After you run a model, you should check convergence. The lines below will create a couple of plots. We are looking for any types of irregularities, upward, or downward trends. To run the convergence check we first need to load another R file with the necessary scripts. I did not want to see the output of running the file and hence I have added echo=F (You can write out TRUE or FALSE or add the shorthand T and F).

source("BayesPlots.R", echo=F)

The following two lines of code will test convergence for every variable and for every team. If you want you can change folders before and after to save the files in a specific place or modify the function RateTracePlots and NonRateTracePlots to include an option for a file path.

RateTracePlots(fit1)
NonRateTracePlots(fit1)

In your working directory you should now see 10 pictures (png files). Instructions about what these are in the BayesPlots.R file we loaded.

We are going to look at fit1_NRTP_1.png. First a bit of background. What did you do so far ? You run a number of Markov Chain Monte Carlo (MCMC) simulations using Bayesian regression. The goal of this is to find the values for your variables. The provided link provides an excellent explanation of how this is done. In this example, you ran 35 simulations (nwarm = 10 and nmain = 25). At the end of every simulation, your variables were given certain values. These values you see as dots on your graph. Convergence happens when the values are similar in each run of the simulation. With our current analysis, it is not possible to make any claims about that. Theta is to Bayesian calculation what beta is to classical frequentist calculations.

Improve the model

As with any other model, you can now decide to add or remove effects until you answered all your questions. For example, we can test for balance (transTrip). We’ll add the effects to our effect object ir_effect, and run the model using sienaBayes. We are using a new fit name fit2 so that we look again at the results we want, extract numbers from fit1. If you are running into memory problems, then you might want to overwrite the model. You could first save fit1 as an Rdata file (save(object, file = filepath)). We did a couple of changes to the sienaBayes call. We increased the length of the Markov Chain, by increasing nwarm and nmain, and asked for a silentstart to reduce the output we get in the console. Running this model takes 58 seconds.

ir_effect<-includeEffects(ir_effect, transTrip)
##   effectName          include fix   test  initialValue parm
## 1 transitive triplets TRUE    FALSE FALSE          0   0
fit2 <- sienaBayes(ir_algo, data=ir, effects=ir_effect, nwarm=20, nmain=70, nrunMHBatches=10, silentstart=T)
## 
## Estimate initial global parameters
## Initial global estimates
## Estimates, standard errors and convergence t-ratios
## 
##                                        Estimate   Standard   Convergence 
##                                                     Error      t-ratio   
##    1. rate constant IS rate (period 1) 121.5396 ( 100.5593 )   -2.6279   
##    2. rate constant IS rate (period 2)   0.3460 (   0.4058 )   -0.1049   
##    3. rate constant IS rate (period 4)  30.6200 ( 100.2487 )   -0.6260   
##    4. rate constant IS rate (period 5)   3.4503 (   4.5326 )   -0.0310   
##    5. rate constant IS rate (period 7)   9.5720 (  21.5764 )   -0.0489   
##    6. rate constant IS rate (period 8)   1.2789 (   1.0380 )   -0.0107   
##    7. eval outdegree (density)          -1.1999 (   0.3892 )   -0.9314   
##    8. eval reciprocity                   0.4560 (   0.7648 )   -1.1567   
##    9. eval transitive triplets           0.4949 (   0.5387 )   -0.4367   
##   10. eval val                           0.4442 (   0.2952 )   -2.0362   
##   11. eval ae ego                        0.3134 (   0.5312 )    0.3165   
## 
## Overall maximum convergence ratio:    3.4265 
## 
## 
## Total of 1592 iteration steps.
## 
## 
## 
## maximum initial global estimate is  121.5396 
## Group 1 
## Estimate initial parameters group 1 
## 
## Initial estimate obtained
##  125.823 0.410 -0.971 0.270 0.495 0.444 0.313 
## Group 2 
## Estimate initial parameters group 2 
## 
## Initial estimate obtained
##  33.219 5.288 -3.014 4.603 0.495 0.444 0.313 
## Group 3 
## Estimate initial parameters group 3 
## 
## Initial estimate obtained
##  9.400 1.313 -1.360 0.890 0.495 0.444 0.313 
## Condition priorRatesFromData=2 impossible, changed to 1.
## Initial global model estimates
## Estimates, standard errors and convergence t-ratios
## 
##                                        Estimate   Standard   Convergence 
##                                                     Error      t-ratio   
##    1. rate constant IS rate (period 1) 121.5396 ( 100.5593 )   -2.6279   
##    2. rate constant IS rate (period 2)   0.3460 (   0.4058 )   -0.1049   
##    3. rate constant IS rate (period 4)  30.6200 ( 100.2487 )   -0.6260   
##    4. rate constant IS rate (period 5)   3.4503 (   4.5326 )   -0.0310   
##    5. rate constant IS rate (period 7)   9.5720 (  21.5764 )   -0.0489   
##    6. rate constant IS rate (period 8)   1.2789 (   1.0380 )   -0.0107   
##    7. eval outdegree (density)          -1.1999 (   0.3892 )   -0.9314   
##    8. eval reciprocity                   0.4560 (   0.7648 )   -1.1567   
##    9. eval transitive triplets           0.4949 (   0.5387 )   -0.4367   
##   10. eval val                           0.4442 (   0.2952 )   -2.0362   
##   11. eval ae ego                        0.3134 (   0.5312 )    0.3165   
## 
## Overall maximum convergence ratio:    3.4265 
## 
## 
## Total of 1592 iteration steps.
## 
## 6.844 
## improveMH
## Desired acceptances 25 .
## ..........
##  1 .           11.9  41.3  12.5  10.9   4.1 
##  multipliers   0.500 2.000 0.500 0.500 0.200 
##  scaleFactors  0.357 1.429 0.357 0.357 0.143 
## ..........
##  2 .           25.4  37.3  20.2  12.5  12.9 
##  multipliers   1.009 2.000 0.907 0.500 0.500 
##  scaleFactors  0.360 2.857 0.324 0.179 0.071 
## ..........
##  3 .           22.7  25.8  20.8  23.3  20.7 
##  multipliers   0.959 1.013 0.926 0.969 0.924 
##  scaleFactors  0.346 2.895 0.300 0.173 0.066 
## ..........
##  4 .           24.9  22.0  23.0  23.3  20.4 
##  multipliers   0.999 0.952 0.967 0.973 0.925 
##  scaleFactors  0.345 2.755 0.290 0.168 0.061 
## fine tuning took  4  iterations.
## improveMH 9.187 seconds.
## .Warming step 1 ( 20 )
## Accepts  12 / 30 
## .Warming step 2 ( 20 )
## Accepts  13 / 30 
## .Warming step 3 ( 20 )
## Accepts  14 / 30 
## .Warming step 4 ( 20 )
## Accepts  18 / 30 
## .Warming step 5 ( 20 )
## Accepts  15 / 30 
## .Warming step 6 ( 20 )
## Accepts  9 / 30 
## .Warming step 7 ( 20 )
## Accepts  18 / 30 
## .Warming step 8 ( 20 )
## Accepts  9 / 30 
## .Warming step 9 ( 20 )
## Accepts  10 / 30 
## .Warming step 10 ( 20 )
## Accepts  8 / 30 
## .Warming step 11 ( 20 )
## Accepts  13 / 30 
## .Warming step 12 ( 20 )
## Accepts  8 / 30 
## .Warming step 13 ( 20 )
## Accepts  16 / 30 
## .Warming step 14 ( 20 )
## Accepts  13 / 30 
## .Warming step 15 ( 20 )
## Accepts  14 / 30 
## .Warming step 16 ( 20 )
## Accepts  14 / 30 
## .Warming step 17 ( 20 )
## Accepts  5 / 30 
## .Warming step 18 ( 20 )
## Accepts  13 / 30 
## .Warming step 19 ( 20 )
## Accepts  12 / 30 
## .Warming step 20 ( 20 )
## Accepts  17 / 30 
## [1] "end of warming"
## warming took 4.836 seconds.
## Parameter values after warming up
## 1 .    123.696      0.831     -1.344      0.292      0.847      0.251      0.262 
## 2 .      4.445      6.035     -1.730      1.710      0.847      0.251      0.262 
## 3 .      7.204      1.136     -1.257      0.466      0.847      0.251      0.262 
## 
## Second improveMH
## Desired acceptances 25 .
## ..........
##  1 .           26.4   9.6  28.0  24.1  24.7 
##  multipliers   1.033 0.500 1.070 0.978 0.994 
##  scaleFactors  0.357 1.378 0.311 0.165 0.061 
## ..........
##  2 .           25.2  19.4  31.5  26.1  25.7 
##  multipliers   1.005 0.891 1.125 1.022 1.013 
##  scaleFactors  0.358 1.227 0.349 0.168 0.061 
## ..........
##  3 .           22.9  19.0  28.3  27.2  28.2 
##  multipliers   0.962 0.894 1.057 1.038 1.056 
##  scaleFactors  0.345 1.097 0.369 0.175 0.065 
## ..........
##  4 .           26.2  23.9  25.9  27.3  27.4 
##  multipliers   1.019 0.982 1.015 1.037 1.040 
##  scaleFactors  0.351 1.078 0.375 0.181 0.068 
## ..........
##  5 .           24.7  23.5  23.9  27.4  27.5 
##  multipliers   0.996 0.977 0.984 1.037 1.038 
##  scaleFactors  0.350 1.053 0.369 0.188 0.070 
## fine tuning took  5  iterations.
## Second improveMH 11.023 seconds.
## .main 21 ( 90 )
## Mu =  191.684 8.19 -2.34 1.421 
## Eta =  1.076 0.325 0.048 
## Sigma = 
##             [,1]      [,2]      [,3]     [,4]
## [1,] 112398.0783 -519.7388 -707.3291 700.8130
## [2,]   -519.7388   55.7908    1.9196  -0.2633
## [3,]   -707.3291    1.9196    5.6780  -4.9976
## [4,]    700.8130   -0.2633   -4.9976   5.3673
## 
## main 21 ( 90 )  Accepts  11 / 30 
## .main 22 ( 90 )
## Mu =  22.396 4.11 -1.934 -1.154 
## Eta =  1.062 0.216 0.215 
## Sigma = 
##           [,1]    [,2]    [,3]    [,4]
## [1,] 3063.8510  0.8275 13.6168 -9.2695
## [2,]    0.8275 29.4144  2.3285  5.7718
## [3,]   13.6168  2.3285  1.3203  0.6299
## [4,]   -9.2695  5.7718  0.6299  9.4853
## 
## main 22 ( 90 )  Accepts  14 / 30 
## .main 23 ( 90 )
## Mu =  -25.753 8.056 -0.553 3.871 
## Eta =  1.168 0.384 -0.28 
## Sigma = 
##           [,1]      [,2]     [,3]      [,4]
## [1,] 9982.8995 -497.7515 -98.1168 -170.2374
## [2,] -497.7515   39.7809   3.7850   13.7347
## [3,]  -98.1168    3.7850   2.2998    1.3679
## [4,] -170.2374   13.7347   1.3679    6.4842
## 
## main 23 ( 90 )  Accepts  12 / 30 
## .main 24 ( 90 )
## Mu =  11.748 6.848 -3.128 2.498 
## Eta =  1.109 0.387 -0.459 
## Sigma = 
##            [,1]    [,2]    [,3]      [,4]
## [1,] 17138.0523 94.1560 42.9265 -156.6532
## [2,]    94.1560 42.7271 -8.6761   11.2318
## [3,]    42.9265 -8.6761  3.0987   -3.7309
## [4,]  -156.6532 11.2318 -3.7309    6.4016
## 
## main 24 ( 90 )  Accepts  17 / 30 
## .main 25 ( 90 )
## Mu =  52.508 5.001 -0.922 0.922 
## Eta =  0.909 0.493 -0.455 
## Sigma = 
##           [,1]     [,2]     [,3]     [,4]
## [1,] 5265.3538 -64.0563 -34.5872 -38.3650
## [2,]  -64.0563   5.4512  -0.5077   1.7805
## [3,]  -34.5872  -0.5077   1.7849   0.3062
## [4,]  -38.3650   1.7805   0.3062   2.4487
## 
## main 25 ( 90 )  Accepts  13 / 30 
## .main 26 ( 90 )
## Mu =  48.307 7.129 -0.62 0.032 
## Eta =  0.916 0.468 -0.243 
## Sigma = 
##           [,1]     [,2]    [,3]    [,4]
## [1,] 6130.9371 -84.6798 -7.2594 -1.0436
## [2,]  -84.6798   7.4357 -0.5413  0.5402
## [3,]   -7.2594  -0.5413  1.8164 -0.5637
## [4,]   -1.0436   0.5402 -0.5637  0.8489
## 
## main 26 ( 90 )  Accepts  17 / 30 
## .main 27 ( 90 )
## Mu =  12.248 6.058 -1.752 0.741 
## Eta =  0.928 0.361 0.032 
## Sigma = 
##           [,1]      [,2]    [,3]    [,4]
## [1,] 4024.2271 -112.7099 19.4514 49.5385
## [2,] -112.7099    9.4864 -1.2572 -2.0175
## [3,]   19.4514   -1.2572  0.9329 -0.1392
## [4,]   49.5385   -2.0175 -0.1392  2.3781
## 
## main 27 ( 90 )  Accepts  17 / 30 
## .main 28 ( 90 )
## Mu =  22.248 4.78 -1.573 1.644 
## Eta =  0.698 0.464 0.119 
## Sigma = 
##           [,1]    [,2]    [,3]     [,4]
## [1,] 6241.2751 40.2019 -2.6985 -30.4608
## [2,]   40.2019  8.3805  0.0673  -0.9027
## [3,]   -2.6985  0.0673  2.0516  -1.0628
## [4,]  -30.4608 -0.9027 -1.0628   1.6643
## 
## main 28 ( 90 )  Accepts  16 / 30 
## .main 29 ( 90 )
## Mu =  -67.846 6.363 -2.31 -0.074 
## Eta =  0.846 0.486 -0.163 
## Sigma = 
##            [,1]      [,2]     [,3]     [,4]
## [1,] 58916.7700 -912.9983 386.8023 744.5425
## [2,]  -912.9983   26.9352  -7.1223 -10.7508
## [3,]   386.8023   -7.1223   5.2924   7.0989
## [4,]   744.5425  -10.7508   7.0989  12.5689
## 
## main 29 ( 90 )  Accepts  13 / 30 
## .main 30 ( 90 )
## Mu =  57.271 0.925 -0.725 1.626 
## Eta =  0.725 0.471 -0.208 
## Sigma = 
##           [,1]      [,2]    [,3]    [,4]
## [1,] 8954.8307 -384.6424 42.5192 34.0726
## [2,] -384.6424   32.4548 -3.4475 -4.4323
## [3,]   42.5192   -3.4475  1.2685  0.1933
## [4,]   34.0726   -4.4323  0.1933  1.5753
## 
## main 30 ( 90 )  Accepts  14 / 30 
## .main 31 ( 90 )
## Mu =  61.13 5.868 -1.192 0.88 
## Eta =  0.784 0.639 -0.45 
## Sigma = 
##           [,1]     [,2]    [,3]    [,4]
## [1,] 5821.9751 -85.7539 13.1141 -7.0453
## [2,]  -85.7539  21.3578 -0.6185 -0.2995
## [3,]   13.1141  -0.6185  1.5225 -0.1912
## [4,]   -7.0453  -0.2995 -0.1912  0.4750
## 
## main 31 ( 90 )  Accepts  12 / 30 
## .main 32 ( 90 )
## Mu =  57.642 5.156 -1.954 0.681 
## Eta =  0.964 0.622 -0.597 
## Sigma = 
##            [,1]      [,2]     [,3]     [,4]
## [1,] 10196.4225 -173.8850 -51.1232 -11.8239
## [2,]  -173.8850   12.7424  -0.4948  -1.3243
## [3,]   -51.1232   -0.4948   1.8339  -0.4470
## [4,]   -11.8239   -1.3243  -0.4470   1.2361
## 
## main 32 ( 90 )  Accepts  15 / 30 
## .main 33 ( 90 )
## Mu =  95.705 2.189 -0.941 0.001 
## Eta =  1.004 0.631 -0.498 
## Sigma = 
##           [,1]      [,2]    [,3]    [,4]
## [1,] 9138.9919 -174.8807 -5.1506 50.9015
## [2,] -174.8807   12.4824 -0.3614  0.5833
## [3,]   -5.1506   -0.3614  0.6613 -0.3132
## [4,]   50.9015    0.5833 -0.3132  2.6970
## 
## main 33 ( 90 )  Accepts  16 / 30 
## .main 34 ( 90 )
## Mu =  11.428 5.616 -1.775 1.327 
## Eta =  0.969 0.665 -0.691 
## Sigma = 
##           [,1]     [,2]     [,3]    [,4]
## [1,] 3822.9016 -42.5075 -39.0950 28.3962
## [2,]  -42.5075   6.3606  -0.4592  1.1714
## [3,]  -39.0950  -0.4592   2.1220 -1.3254
## [4,]   28.3962   1.1714  -1.3254  1.9206
## 
## main 34 ( 90 )  Accepts  13 / 30 
## .main 35 ( 90 )
## Mu =  55.026 0.587 -2.472 0.441 
## Eta =  0.819 0.615 -0.597 
## Sigma = 
##          [,1]     [,2]    [,3]    [,4]
## [1,] 7385.107 -262.502 -48.203 -51.689
## [2,] -262.502   18.879   2.767   3.619
## [3,]  -48.203    2.767   2.820   0.277
## [4,]  -51.689    3.619   0.277   1.321
## 
## main 35 ( 90 )  Accepts  14 / 30 
## .main 36 ( 90 )
## Mu =  83.09 5.464 -0.552 1.149 
## Eta =  0.867 0.66 -0.399 
## Sigma = 
##          [,1]    [,2]    [,3]   [,4]
## [1,] 2679.126 -14.843 -23.618 14.093
## [2,]  -14.843  25.743  -5.623  1.141
## [3,]  -23.618  -5.623   2.613 -0.346
## [4,]   14.093   1.141  -0.346  0.886
## 
## main 36 ( 90 )  Accepts  10 / 30 
## .main 37 ( 90 )
## Mu =  56.648 5.498 -3.383 2.497 
## Eta =  0.68 0.696 -0.166 
## Sigma = 
##          [,1]   [,2]     [,3]    [,4]
## [1,] 4687.875 23.229 -169.043 117.895
## [2,]   23.229  9.166   -3.839   2.611
## [3,] -169.043 -3.839   10.204  -6.404
## [4,]  117.895  2.611   -6.404   4.985
## 
## main 37 ( 90 )  Accepts  21 / 30 
## .main 38 ( 90 )
## Mu =  125.256 3.004 -1.469 1.194 
## Eta =  0.71 0.662 -0.721 
## Sigma = 
##          [,1]     [,2]   [,3]    [,4]
## [1,] 5153.781 -107.179 -2.989 -42.890
## [2,] -107.179    6.477 -0.646   1.552
## [3,]   -2.989   -0.646  0.752   0.326
## [4,]  -42.890    1.552  0.326   4.051
## 
## main 38 ( 90 )  Accepts  16 / 30 
## .main 39 ( 90 )
## Mu =  -24.282 8.555 -1.013 2.214 
## Eta =  0.563 0.583 -0.904 
## Sigma = 
##           [,1]     [,2]    [,3]     [,4]
## [1,] 11620.564 -330.099 -36.247 -155.277
## [2,]  -330.099   33.400   2.969    4.916
## [3,]   -36.247    2.969   1.251    0.210
## [4,]  -155.277    4.916   0.210    2.822
## 
## main 39 ( 90 )  Accepts  14 / 30 
## .main 40 ( 90 )
## Mu =  12.508 7.492 -0.433 1.182 
## Eta =  0.714 0.749 -0.669 
## Sigma = 
##           [,1]      [,2]    [,3]     [,4]
## [1,] 26677.950 -1384.737 -79.475 -196.831
## [2,] -1384.737    82.990   4.016   12.776
## [3,]   -79.475     4.016   1.345    0.191
## [4,]  -196.831    12.776   0.191    2.985
## 
## main 40 ( 90 )  Accepts  6 / 30 
## .main 41 ( 90 )
## Mu =  78.406 3.627 -1.406 1.155 
## Eta =  0.478 0.852 -0.623 
## Sigma = 
##          [,1]     [,2]   [,3]    [,4]
## [1,] 5573.828 -202.232 42.638 -29.854
## [2,] -202.232   13.280 -1.721   0.445
## [3,]   42.638   -1.721  1.275  -0.191
## [4,]  -29.854    0.445 -0.191   0.923
## 
## main 41 ( 90 )  Accepts  17 / 30 
## .main 42 ( 90 )
## Mu =  17.155 5.295 -1.191 2.281 
## Eta =  0.806 0.739 -0.543 
## Sigma = 
##          [,1]    [,2]    [,3]    [,4]
## [1,] 3339.754 -34.143 -14.067 -47.851
## [2,]  -34.143   8.022  -0.035   2.872
## [3,]  -14.067  -0.035   1.168   0.120
## [4,]  -47.851   2.872   0.120   2.427
## 
## main 42 ( 90 )  Accepts  15 / 30 
## .main 43 ( 90 )
## Mu =  28.076 11.402 -2.214 1.69 
## Eta =  0.605 0.814 -0.444 
## Sigma = 
##          [,1]    [,2]   [,3]    [,4]
## [1,] 2750.724 -54.497 -7.969 -26.362
## [2,]  -54.497  12.670 -2.447   1.013
## [3,]   -7.969  -2.447  1.786  -0.548
## [4,]  -26.362   1.013 -0.548   1.335
## 
## main 43 ( 90 )  Accepts  18 / 30 
## .main 44 ( 90 )
## Mu =  74.036 2.817 -1.215 0.548 
## Eta =  0.643 0.655 -0.702 
## Sigma = 
##          [,1]    [,2]    [,3]   [,4]
## [1,] 3610.134 -69.161 -48.118  2.600
## [2,]  -69.161  10.645  -0.467  2.137
## [3,]  -48.118  -0.467   2.013 -0.669
## [4,]    2.600   2.137  -0.669  1.007
## 
## main 44 ( 90 )  Accepts  9 / 30 
## .main 45 ( 90 )
## Mu =  34.553 6.465 -0.385 1.169 
## Eta =  0.53 0.862 -0.35 
## Sigma = 
##          [,1]     [,2]   [,3]    [,4]
## [1,] 8161.429 -112.000 44.467 -23.188
## [2,] -112.000    7.764 -2.322   1.235
## [3,]   44.467   -2.322  1.788  -0.716
## [4,]  -23.188    1.235 -0.716   1.006
## 
## main 45 ( 90 )  Accepts  13 / 30 
## .main 46 ( 90 )
## Mu =  115.025 4.284 -2.23 -0.747 
## Eta =  0.399 0.909 -0.405 
## Sigma = 
##           [,1]     [,2]    [,3]   [,4]
## [1,] 13479.047 -406.011 -48.631 -5.018
## [2,]  -406.011   22.669   1.063  1.945
## [3,]   -48.631    1.063   1.265  0.767
## [4,]    -5.018    1.945   0.767  1.909
## 
## main 46 ( 90 )  Accepts  14 / 30 
## .main 47 ( 90 )
## Mu =  37.685 7.236 -2.016 1.183 
## Eta =  0.419 0.736 -0.106 
## Sigma = 
##          [,1]     [,2]   [,3]    [,4]
## [1,] 5296.960 -167.310 13.862 -55.531
## [2,] -167.310   11.076 -1.358   1.730
## [3,]   13.862   -1.358  0.706  -0.218
## [4,]  -55.531    1.730 -0.218   2.418
## 
## main 47 ( 90 )  Accepts  17 / 30 
## .main 48 ( 90 )
## Mu =  10.646 4.457 -1.961 2.043 
## Eta =  0.46 1.015 -0.64 
## Sigma = 
##          [,1]     [,2]   [,3]    [,4]
## [1,] 9495.108 -222.855 29.664 -94.080
## [2,] -222.855   14.618 -4.272   3.506
## [3,]   29.664   -4.272  3.072  -1.197
## [4,]  -94.080    3.506 -1.197   1.989
## 
## main 48 ( 90 )  Accepts  15 / 30 
## .main 49 ( 90 )
## Mu =  70.284 2.567 -1.026 0.717 
## Eta =  0.749 1.007 -0.502 
## Sigma = 
##          [,1]    [,2]   [,3]   [,4]
## [1,] 3987.520 -31.730 28.415 -0.711
## [2,]  -31.730   3.508 -0.167  0.214
## [3,]   28.415  -0.167  1.071 -0.394
## [4,]   -0.711   0.214 -0.394  0.630
## 
## main 49 ( 90 )  Accepts  18 / 30 
## .main 50 ( 90 )
## Mu =  53.068 6.62 -1.217 1.282 
## Eta =  0.705 0.893 -0.43 
## Sigma = 
##           [,1]     [,2]    [,3]     [,4]
## [1,] 37422.042 -735.229 -83.517 -243.397
## [2,]  -735.229   27.498   0.687    7.017
## [3,]   -83.517    0.687   1.882    0.721
## [4,]  -243.397    7.017   0.721    2.497
## 
## main 50 ( 90 )  Accepts  11 / 30 
## .main 51 ( 90 )
## Mu =  4.984 4.468 -1.368 -0.146 
## Eta =  0.408 0.928 -0.383 
## Sigma = 
##          [,1]    [,2]    [,3]   [,4]
## [1,] 4161.336 -40.919 -18.621 14.274
## [2,]  -40.919   4.311   0.243 -0.269
## [3,]  -18.621   0.243   0.914  0.278
## [4,]   14.274  -0.269   0.278  1.608
## 
## main 51 ( 90 )  Accepts  12 / 30 
## .main 52 ( 90 )
## Mu =  125.164 5.358 -2.192 1.464 
## Eta =  0.482 0.922 -0.117 
## Sigma = 
##          [,1]   [,2]   [,3]   [,4]
## [1,] 4117.982 19.884 -2.406 30.380
## [2,]   19.884  6.723 -0.049  0.479
## [3,]   -2.406 -0.049  1.417 -0.269
## [4,]   30.380  0.479 -0.269  1.277
## 
## main 52 ( 90 )  Accepts  14 / 30 
## .main 53 ( 90 )
## Mu =  12.52 5.465 -1.675 0.379 
## Eta =  0.444 1.045 -0.203 
## Sigma = 
##          [,1]    [,2]   [,3]  [,4]
## [1,] 6178.092 -86.605 12.948 1.158
## [2,]  -86.605   4.357 -0.133 0.470
## [3,]   12.948  -0.133  0.699 0.129
## [4,]    1.158   0.470  0.129 0.565
## 
## main 53 ( 90 )  Accepts  11 / 30 
## .main 54 ( 90 )
## Mu =  65.774 3.009 -1.116 0.262 
## Eta =  0.521 1.15 -0.251 
## Sigma = 
##          [,1]    [,2]   [,3]    [,4]
## [1,] 2219.481 -38.936  0.573 -12.468
## [2,]  -38.936   5.367 -0.350   0.675
## [3,]    0.573  -0.350  0.656  -0.364
## [4,]  -12.468   0.675 -0.364   0.835
## 
## main 54 ( 90 )  Accepts  17 / 30 
## .main 55 ( 90 )
## Mu =  40.386 6.986 -1.371 1.318 
## Eta =  0.524 0.972 -0.041 
## Sigma = 
##          [,1]    [,2]   [,3]   [,4]
## [1,] 3134.297 -29.440 11.216 55.271
## [2,]  -29.440   5.280 -0.997  0.449
## [3,]   11.216  -0.997  2.093  0.552
## [4,]   55.271   0.449  0.552  2.521
## 
## main 55 ( 90 )  Accepts  12 / 30 
## .main 56 ( 90 )
## Mu =  17.232 5.044 -2.122 0.328 
## Eta =  0.314 0.819 0.029 
## Sigma = 
##          [,1]    [,2]   [,3]   [,4]
## [1,] 2116.623 -29.275  0.213  8.550
## [2,]  -29.275  10.469 -1.641 -2.061
## [3,]    0.213  -1.641  1.593  0.558
## [4,]    8.550  -2.061  0.558  1.444
## 
## main 56 ( 90 )  Accepts  16 / 30 
## .main 57 ( 90 )
## Mu =  -8.083 4.933 -1.733 0.976 
## Eta =  0.234 0.884 -0.206 
## Sigma = 
##          [,1]    [,2]   [,3]    [,4]
## [1,] 6548.491 -94.924 45.988 -20.567
## [2,]  -94.924   8.928  0.124  -0.152
## [3,]   45.988   0.124  2.111  -0.247
## [4,]  -20.567  -0.152 -0.247   0.573
## 
## main 57 ( 90 )  Accepts  15 / 30 
## .main 58 ( 90 )
## Mu =  80.952 5.335 -1.814 0.68 
## Eta =  0.119 0.984 0.148 
## Sigma = 
##          [,1]     [,2]   [,3]   [,4]
## [1,] 7788.476 -130.370 23.762 44.963
## [2,] -130.370    6.013 -1.971 -0.054
## [3,]   23.762   -1.971  1.396 -0.471
## [4,]   44.963   -0.054 -0.471  1.441
## 
## main 58 ( 90 )  Accepts  15 / 30 
## .main 59 ( 90 )
## Mu =  59.647 7.293 -0.461 0.812 
## Eta =  0.026 0.96 -0.198 
## Sigma = 
##          [,1]    [,2]   [,3]   [,4]
## [1,] 3880.388 -71.379 20.001 41.787
## [2,]  -71.379   7.663 -1.098  0.144
## [3,]   20.001  -1.098  1.382 -0.275
## [4,]   41.787   0.144 -0.275  1.230
## 
## main 59 ( 90 )  Accepts  16 / 30 
## .main 60 ( 90 )
## Mu =  95.63 2.728 1.102 -0.299 
## Eta =  0.04 1.012 -0.338 
## Sigma = 
##          [,1]     [,2]    [,3]   [,4]
## [1,] 5526.328 -123.461 -10.288 18.766
## [2,] -123.461    5.433  -0.766 -0.507
## [3,]  -10.288   -0.766   2.719 -0.397
## [4,]   18.766   -0.507  -0.397  0.580
## 
## main 60 ( 90 )  Accepts  11 / 30 
## .main 61 ( 90 )
## Mu =  59.977 0.63 -1.133 0.12 
## Eta =  0.029 1.006 -0.273 
## Sigma = 
##          [,1]     [,2]   [,3]    [,4]
## [1,] 4287.339 -101.219 53.533 -22.075
## [2,] -101.219    7.231 -0.449   0.042
## [3,]   53.533   -0.449  5.035  -2.209
## [4,]  -22.075    0.042 -2.209   1.451
## 
## main 61 ( 90 )  Accepts  12 / 30 
## .main 62 ( 90 )
## Mu =  3.98 4.494 -1.005 0.705 
## Eta =  -0.034 1.199 -0.301 
## Sigma = 
##          [,1]   [,2]    [,3]   [,4]
## [1,] 2897.069 53.608 -16.133 19.805
## [2,]   53.608 13.763  -0.726  2.697
## [3,]  -16.133 -0.726   1.060 -0.389
## [4,]   19.805  2.697  -0.389  1.105
## 
## main 62 ( 90 )  Accepts  16 / 30 
## .main 63 ( 90 )
## Mu =  10.068 5.47 -1.388 0.702 
## Eta =  -0.05 0.947 -0.332 
## Sigma = 
##          [,1]     [,2]   [,3]   [,4]
## [1,] 7497.722 -117.356 88.999 41.539
## [2,] -117.356    4.925 -0.366 -1.337
## [3,]   88.999   -0.366  7.787 -1.436
## [4,]   41.539   -1.337 -1.436  1.451
## 
## main 63 ( 90 )  Accepts  19 / 30 
## .main 64 ( 90 )
## Mu =  46.21 5.594 -2.057 2.412 
## Eta =  0.207 0.993 0.023 
## Sigma = 
##          [,1]    [,2]   [,3]   [,4]
## [1,] 3748.563 -51.939 16.855 18.317
## [2,]  -51.939   5.078 -0.944  1.118
## [3,]   16.855  -0.944  1.195 -0.117
## [4,]   18.317   1.118 -0.117  1.279
## 
## main 64 ( 90 )  Accepts  14 / 30 
## .main 65 ( 90 )
## Mu =  72.905 2.591 -1.813 1.073 
## Eta =  0.32 0.99 -0.217 
## Sigma = 
##          [,1]     [,2]    [,3]   [,4]
## [1,] 4536.009 -106.565 -39.556 -4.545
## [2,] -106.565    5.505   1.542  0.256
## [3,]  -39.556    1.542   1.892 -0.074
## [4,]   -4.545    0.256  -0.074  0.520
## 
## main 65 ( 90 )  Accepts  15 / 30 
## .main 66 ( 90 )
## Mu =  21.332 8.541 0.36 1.568 
## Eta =  0.283 0.919 -0.326 
## Sigma = 
##          [,1]     [,2]    [,3]    [,4]
## [1,] 3816.378 -203.194 -49.009 -36.286
## [2,] -203.194   20.806   4.459   2.454
## [3,]  -49.009    4.459   1.781   0.486
## [4,]  -36.286    2.454   0.486   0.757
## 
## main 66 ( 90 )  Accepts  20 / 30 
## .main 67 ( 90 )
## Mu =  -33.488 4.208 -0.547 0.801 
## Eta =  0.355 0.955 -0.346 
## Sigma = 
##          [,1]     [,2]    [,3]    [,4]
## [1,] 5462.232 -249.433 -20.313 -11.462
## [2,] -249.433   24.678  -0.308  -0.500
## [3,]  -20.313   -0.308   1.344   0.577
## [4,]  -11.462   -0.500   0.577   0.836
## 
## main 67 ( 90 )  Accepts  15 / 30 
## .main 68 ( 90 )
## Mu =  62.308 2.794 -1.016 1.211 
## Eta =  0.358 1.016 -0.341 
## Sigma = 
##          [,1]   [,2]   [,3]   [,4]
## [1,] 2742.909 10.363 -3.672  2.350
## [2,]   10.363  6.695 -1.862  1.449
## [3,]   -3.672 -1.862  1.693 -0.948
## [4,]    2.350  1.449 -0.948  1.083
## 
## main 68 ( 90 )  Accepts  7 / 30 
## .main 69 ( 90 )
## Mu =  47.487 4.642 -1.996 1.839 
## Eta =  0.375 0.994 -0.135 
## Sigma = 
##          [,1]    [,2]   [,3]    [,4]
## [1,] 1586.714 -33.048 21.636 -20.615
## [2,]  -33.048   4.455 -0.407   0.747
## [3,]   21.636  -0.407  1.604  -1.350
## [4,]  -20.615   0.747 -1.350   2.164
## 
## main 69 ( 90 )  Accepts  18 / 30 
## .main 70 ( 90 )
## Mu =  63.243 4.301 -2.588 2.165 
## Eta =  0.299 0.936 -0.377 
## Sigma = 
##          [,1]    [,2]   [,3]    [,4]
## [1,] 6453.270 109.695  4.234 -56.516
## [2,]  109.695   8.680 -1.787  -1.131
## [3,]    4.234  -1.787  1.493   0.262
## [4,]  -56.516  -1.131  0.262   4.600
## 
## main 70 ( 90 )  Accepts  18 / 30 
## .main 71 ( 90 )
## Mu =  78.952 2.254 -1.122 1.195 
## Eta =  0.203 0.965 -0.37 
## Sigma = 
##          [,1]     [,2]   [,3]    [,4]
## [1,] 7127.943 -197.192 49.655 -35.406
## [2,] -197.192   10.351 -2.097   1.457
## [3,]   49.655   -2.097  1.034  -0.387
## [4,]  -35.406    1.457 -0.387   1.136
## 
## main 71 ( 90 )  Accepts  19 / 30 
## .main 72 ( 90 )
## Mu =  63.149 4.529 -1.383 1.254 
## Eta =  0.266 0.838 -0.42 
## Sigma = 
##          [,1]     [,2]   [,3]    [,4]
## [1,] 4750.769 -183.836  1.044 -36.731
## [2,] -183.836   16.724 -0.933   4.029
## [3,]    1.044   -0.933  1.145  -0.253
## [4,]  -36.731    4.029 -0.253   2.588
## 
## main 72 ( 90 )  Accepts  12 / 30 
## .main 73 ( 90 )
## Mu =  56.789 4.559 -2.356 0.746 
## Eta =  0.234 0.886 -0.441 
## Sigma = 
##          [,1]     [,2]    [,3]    [,4]
## [1,] 6049.945 -176.234 -38.827 -47.018
## [2,] -176.234   11.924   0.202  -0.034
## [3,]  -38.827    0.202   1.649   0.720
## [4,]  -47.018   -0.034   0.720   2.350
## 
## main 73 ( 90 )  Accepts  13 / 30 
## .main 74 ( 90 )
## Mu =  48.432 6.134 -1.19 1.897 
## Eta =  0.259 1.055 -0.37 
## Sigma = 
##          [,1]    [,2]    [,3]   [,4]
## [1,] 4168.114 -64.661 -15.949 20.036
## [2,]  -64.661   8.468   0.637  0.405
## [3,]  -15.949   0.637   0.995 -0.676
## [4,]   20.036   0.405  -0.676  2.226
## 
## main 74 ( 90 )  Accepts  16 / 30 
## .main 75 ( 90 )
## Mu =  22.201 3.441 -1.034 0.662 
## Eta =  0.412 1.159 -0.491 
## Sigma = 
##          [,1]    [,2]   [,3]   [,4]
## [1,] 5791.468 -34.141 -3.454 24.500
## [2,]  -34.141   7.249  0.103 -0.071
## [3,]   -3.454   0.103  0.422 -0.245
## [4,]   24.500  -0.071 -0.245  0.790
## 
## main 75 ( 90 )  Accepts  17 / 30 
## .main 76 ( 90 )
## Mu =  79.428 7.632 -1.557 0.738 
## Eta =  0.313 1.08 -0.639 
## Sigma = 
##           [,1]    [,2]   [,3]     [,4]
## [1,] 13661.961 -43.275 91.149 -143.755
## [2,]   -43.275   9.855 -2.719   -0.155
## [3,]    91.149  -2.719  2.618   -0.974
## [4,]  -143.755  -0.155 -0.974    2.350
## 
## main 76 ( 90 )  Accepts  19 / 30 
## 
## Mu =  79.428 7.632 -1.557 0.738 
## Eta =  0.313 1.08 -0.639 
## Sigma = 
##           [,1]    [,2]   [,3]     [,4]
## [1,] 13661.961 -43.275 91.149 -143.755
## [2,]   -43.275   9.855 -2.719   -0.155
## [3,]    91.149  -2.719  2.618   -0.974
## [4,]  -143.755  -0.155 -0.974    2.350
## 
## .main 77 ( 90 )
## Mu =  57.118 3.67 -1.085 0.881 
## Eta =  0.244 1.085 -0.518 
## Sigma = 
##          [,1]   [,2]   [,3]    [,4]
## [1,] 4798.341 -6.241 -1.859 -31.689
## [2,]   -6.241 14.637  1.895  -2.503
## [3,]   -1.859  1.895  1.410  -0.876
## [4,]  -31.689 -2.503 -0.876   1.270
## 
## main 77 ( 90 )  Accepts  13 / 30 
## .main 78 ( 90 )
## Mu =  18.416 5.251 -1.99 1.776 
## Eta =  0.325 0.979 -0.625 
## Sigma = 
##          [,1]    [,2]   [,3]    [,4]
## [1,] 5629.622 -53.164 40.325 -17.700
## [2,]  -53.164   5.768  0.870  -0.717
## [3,]   40.325   0.870  4.269  -2.513
## [4,]  -17.700  -0.717 -2.513   2.137
## 
## main 78 ( 90 )  Accepts  10 / 30 
## .main 79 ( 90 )
## Mu =  -9.901 5.889 -1.256 1.352 
## Eta =  0.297 0.942 -0.576 
## Sigma = 
##           [,1]     [,2]   [,3]    [,4]
## [1,] 12170.679 -452.903 18.761 -89.056
## [2,]  -452.903   23.901 -0.334   2.741
## [3,]    18.761   -0.334  3.731  -1.397
## [4,]   -89.056    2.741 -1.397   3.107
## 
## main 79 ( 90 )  Accepts  12 / 30 
## .main 80 ( 90 )
## Mu =  16.806 5.156 -0.696 0.181 
## Eta =  0.273 1.048 -0.578 
## Sigma = 
##          [,1]     [,2]   [,3]    [,4]
## [1,] 4897.757 -121.135  4.919 -17.917
## [2,] -121.135   15.249 -2.642   3.900
## [3,]    4.919   -2.642  1.571  -1.486
## [4,]  -17.917    3.900 -1.486   2.750
## 
## main 80 ( 90 )  Accepts  16 / 30 
## .main 81 ( 90 )
## Mu =  -23.268 2.369 -1.767 1.709 
## Eta =  0.267 0.935 -0.551 
## Sigma = 
##           [,1]    [,2]    [,3]     [,4]
## [1,] 18144.091 466.955 127.333 -134.626
## [2,]   466.955  16.129   3.457   -3.805
## [3,]   127.333   3.457   1.942   -1.363
## [4,]  -134.626  -3.805  -1.363    1.567
## 
## main 81 ( 90 )  Accepts  10 / 30 
## .main 82 ( 90 )
## Mu =  56.07 8.449 -2.945 3.495 
## Eta =  0.453 0.974 -0.835 
## Sigma = 
##           [,1]    [,2]     [,3]    [,4]
## [1,] 17209.358 288.878 -266.387 145.479
## [2,]   288.878  10.040   -6.476   4.654
## [3,]  -266.387  -6.476    6.633  -4.231
## [4,]   145.479   4.654   -4.231   4.116
## 
## main 82 ( 90 )  Accepts  11 / 30 
## .main 83 ( 90 )
## Mu =  45.455 5.225 -1.771 0.62 
## Eta =  0.516 1.246 -0.68 
## Sigma = 
##          [,1]    [,2]   [,3]    [,4]
## [1,] 3434.107 -90.519 16.349 -14.707
## [2,]  -90.519  12.226 -1.163   1.741
## [3,]   16.349  -1.163  0.572  -0.365
## [4,]  -14.707   1.741 -0.365   1.031
## 
## main 83 ( 90 )  Accepts  15 / 30 
## .main 84 ( 90 )
## Mu =  113.437 1.487 -0.222 -0.006 
## Eta =  0.462 1.131 -0.414 
## Sigma = 
##          [,1]     [,2]   [,3]     [,4]
## [1,] 9521.301 -264.570 80.938 -157.683
## [2,] -264.570   17.725 -7.189   11.229
## [3,]   80.938   -7.189  5.838   -6.674
## [4,] -157.683   11.229 -6.674    9.384
## 
## main 84 ( 90 )  Accepts  12 / 30 
## .main 85 ( 90 )
## Mu =  -25.13 5.713 -1.18 -0.202 
## Eta =  0.181 1.18 0.014 
## Sigma = 
##           [,1]     [,2]    [,3]   [,4]
## [1,] 15552.528 -294.622 -56.758 98.828
## [2,]  -294.622   12.070   0.693  0.139
## [3,]   -56.758    0.693   2.352 -1.313
## [4,]    98.828    0.139  -1.313  2.874
## 
## main 85 ( 90 )  Accepts  19 / 30 
## .main 86 ( 90 )
## Mu =  63.27 3.016 -0.702 0.125 
## Eta =  0.173 1.072 0.122 
## Sigma = 
##          [,1]     [,2]   [,3]     [,4]
## [1,] 6541.699 -203.548 75.648 -114.148
## [2,] -203.548   14.380 -4.782    6.041
## [3,]   75.648   -4.782  2.568   -2.921
## [4,] -114.148    6.041 -2.921    4.274
## 
## main 86 ( 90 )  Accepts  15 / 30 
## .main 87 ( 90 )
## Mu =  75.73 4.166 -1.9 2.03 
## Eta =  0.009 1.125 0.09 
## Sigma = 
##          [,1]     [,2]   [,3]     [,4]
## [1,] 9835.149 -147.875 -2.614 -129.470
## [2,] -147.875    7.117 -0.323    2.308
## [3,]   -2.614   -0.323  2.238   -0.430
## [4,] -129.470    2.308 -0.430    3.286
## 
## main 87 ( 90 )  Accepts  17 / 30 
## .main 88 ( 90 )
## Mu =  38.294 4.852 0.062 -0.05 
## Eta =  -0.091 0.936 -0.538 
## Sigma = 
##          [,1]    [,2]   [,3]     [,4]
## [1,] 5075.132 -71.677 43.226 -103.356
## [2,]  -71.677  10.815 -1.347    3.317
## [3,]   43.226  -1.347  4.380   -4.860
## [4,] -103.356   3.317 -4.860    6.927
## 
## main 88 ( 90 )  Accepts  16 / 30 
## .main 89 ( 90 )
## Mu =  4.239 4.538 -0.928 1.086 
## Eta =  0.12 1.188 -0.515 
## Sigma = 
##          [,1]   [,2]   [,3]   [,4]
## [1,] 2226.759 10.672 -4.861  4.882
## [2,]   10.672 14.557 -0.829 -1.067
## [3,]   -4.861 -0.829  1.154 -0.530
## [4,]    4.882 -1.067 -0.530  1.291
## 
## main 89 ( 90 )  Accepts  17 / 30 
## .main 90 ( 90 )
## Mu =  29.292 7.314 -1.505 2.271 
## Eta =  0.293 1.172 -0.924 
## Sigma = 
##          [,1]    [,2]    [,3]    [,4]
## [1,] 1838.594 -73.249 -18.006 -12.987
## [2,]  -73.249  15.619  -1.372   1.800
## [3,]  -18.006  -1.372   1.754  -0.235
## [4,]  -12.987   1.800  -0.235   1.481
## 
## main 90 ( 90 )  Accepts  18 / 30 
## Total duration 49.375 seconds.
fit2
## Note: this summary does not contain a convergence check.
## 
## Groups:
##  Data1   Data2   Data3   
## 
## Posterior means and standard deviations for global mean parameters
## 
## Total number of runs in the results is  90 .
## Posterior means and standard deviations are averages over 70 MCMC runs (counted after thinning).
## 
##                                        Post.      Post.       cred.    cred.   p      varying  Post.    cred.   cred.   
##                                        mean       s.d.m.      from     to                      s.d.     from    to      
##    1. rate constant IS rate (period 1) 121.3306 ( 1.5586   )                                       NA       NA      NA  
##    2. rate constant IS rate (period 2)   1.7116 ( 0.9120   )                                       NA       NA      NA  
##    3. rate constant IS rate (period 4)   3.3695 ( 1.0347   )                                       NA       NA      NA  
##    4. rate constant IS rate (period 5)   5.4719 ( 1.3183   )                                       NA       NA      NA  
##    5. rate constant IS rate (period 7)   7.8557 ( 1.0475   )                                       NA       NA      NA  
##    6. rate constant IS rate (period 8)   3.7912 ( 1.5776   )                                       NA       NA      NA  
##    7. eval outdegree (density)          -1.4052 ( 0.7870   ) -2.9953  0.1438  0.04       +     1.4873   0.7955  2.6364  
##    8. eval reciprocity                   1.0650 ( 0.9067   ) -0.4224  2.7724  0.89       +     1.5721   0.7437  3.0678  
##    9. eval transitive triplets           0.4824 ( 0.3157   ) -0.0386  1.0855  0.96       -         NA       NA      NA  
##   10. eval val                           0.8527 ( 0.2438   )  0.3514  1.1909  1.00       -         NA       NA      NA  
##   11. eval ae ego                       -0.3610 ( 0.2607   ) -0.8542  0.1293  0.14       -         NA       NA      NA  
## 
## Posterior mean of global covariance matrix (varying parameters)
## 9422.0361 -143.6653  -7.8452  -4.7804
## -143.6653  14.8624  -0.8373   1.4848
##  -7.8452  -0.8373   2.2119  -0.6851
##  -4.7804   1.4848  -0.6851   2.4714
## 
## Posterior standard deviations of elements of global covariance matrix
## 15086.4854 246.8342 111.7389 144.0621
## 246.8342  13.0012   2.4988   3.6768
## 111.7389   2.4988   1.7631   1.8337
## 144.0621   3.6768   1.8337   2.2622
sink("results_of_model.txt", append=T)
fit2
## Note: this summary does not contain a convergence check.
## 
## Groups:
##  Data1   Data2   Data3   
## 
## Posterior means and standard deviations for global mean parameters
## 
## Total number of runs in the results is  90 .
## Posterior means and standard deviations are averages over 70 MCMC runs (counted after thinning).
## 
##                                        Post.      Post.       cred.    cred.   p      varying  Post.    cred.   cred.   
##                                        mean       s.d.m.      from     to                      s.d.     from    to      
##    1. rate constant IS rate (period 1) 121.3306 ( 1.5586   )                                       NA       NA      NA  
##    2. rate constant IS rate (period 2)   1.7116 ( 0.9120   )                                       NA       NA      NA  
##    3. rate constant IS rate (period 4)   3.3695 ( 1.0347   )                                       NA       NA      NA  
##    4. rate constant IS rate (period 5)   5.4719 ( 1.3183   )                                       NA       NA      NA  
##    5. rate constant IS rate (period 7)   7.8557 ( 1.0475   )                                       NA       NA      NA  
##    6. rate constant IS rate (period 8)   3.7912 ( 1.5776   )                                       NA       NA      NA  
##    7. eval outdegree (density)          -1.4052 ( 0.7870   ) -2.9953  0.1438  0.04       +     1.4873   0.7955  2.6364  
##    8. eval reciprocity                   1.0650 ( 0.9067   ) -0.4224  2.7724  0.89       +     1.5721   0.7437  3.0678  
##    9. eval transitive triplets           0.4824 ( 0.3157   ) -0.0386  1.0855  0.96       -         NA       NA      NA  
##   10. eval val                           0.8527 ( 0.2438   )  0.3514  1.1909  1.00       -         NA       NA      NA  
##   11. eval ae ego                       -0.3610 ( 0.2607   ) -0.8542  0.1293  0.14       -         NA       NA      NA  
## 
## Posterior mean of global covariance matrix (varying parameters)
## 9422.0361 -143.6653  -7.8452  -4.7804
## -143.6653  14.8624  -0.8373   1.4848
##  -7.8452  -0.8373   2.2119  -0.6851
##  -4.7804   1.4848  -0.6851   2.4714
## 
## Posterior standard deviations of elements of global covariance matrix
## 15086.4854 246.8342 111.7389 144.0621
## 246.8342  13.0012   2.4988   3.6768
## 111.7389   2.4988   1.7631   1.8337
## 144.0621   3.6768   1.8337   2.2622
sink()

Again, we’ll be inspecting the convergence plots.

RateTracePlots(fit2)
NonRateTracePlots(fit2)

Wow, that backfired. There is a slight backward trend for information retrieval estimates for t1 in Group 1. The estimates for the dyadic and individual covariates are also fluctuating. If this would happen, you should first test the robustness of these results by modifying the parameters for the Markov Chain. For example, you could run: fit3 <- sienaBayes(ir_algo, data=ir, effects=ir_effect, nwarm=20, nmain=100, nrunMHBatches=10, silentstart=T, initgainGlobal = 0, initgainGroupwise = 0).

To inspect the model, run convergence test you can load the saved model fit3.

fit3 <- sienaBayes(ir_algo, data=ir, effects=ir_effect, nwarm=20, nmain=100, nrunMHBatches=10, silentstart=T, initgainGlobal = 0, initgainGroupwise = 0)
## 
## Estimate initial global parameters
## Initial global estimates
## Estimates, standard errors and convergence t-ratios
## 
##                                        Estimate   Standard   Convergence 
##                                                     Error      t-ratio   
##    1. rate constant IS rate (period 1)  4.3692  ( 8.5472   )   -1.8561   
##    2. rate constant IS rate (period 2)  0.6769  ( 0.5581   )    0.5856   
##    3. rate constant IS rate (period 4)  2.4800  ( 4.1263   )   -0.2986   
##    4. rate constant IS rate (period 5)  1.9077  ( 1.5701   )    0.1026   
##    5. rate constant IS rate (period 7)  3.8571  ( 2.9802   )   -0.6101   
##    6. rate constant IS rate (period 8)  1.6316  ( 0.9466   )    0.8369   
##    7. eval outdegree (density)         -0.3923  ( 0.5194   )   -1.0950   
##    8. eval reciprocity                  0.0000  ( 0.6030   )   -2.4426   
##    9. eval transitive triplets          0.0000  ( 0.4048   )   -2.7710   
##   10. eval val                          0.0000  ( 0.2183   )   -3.3581   
##   11. eval ae ego                       0.0000  ( 0.5176   )   -0.9638   
## 
## Overall maximum convergence ratio:    5.4349 
## 
## 
## Total of 500 iteration steps.
## 
## 
## 
## maximum initial global estimate is  4.369231 
## Group 1 
## Estimate initial parameters group 1 
## 
## Initial estimate obtained
##  4.369 0.677 -0.392 0.000 0.000 0.000 0.000 
## Group 2 
## Estimate initial parameters group 2 
## 
## Initial estimate obtained
##  2.480 1.908 -0.392 0.000 0.000 0.000 0.000 
## Group 3 
## Estimate initial parameters group 3 
## 
## Initial estimate obtained
##  3.857 1.632 -0.392 0.000 0.000 0.000 0.000 
## Condition priorRatesFromData=2 impossible, changed to 1.
## Initial global model estimates
## Estimates, standard errors and convergence t-ratios
## 
##                                        Estimate   Standard   Convergence 
##                                                     Error      t-ratio   
##    1. rate constant IS rate (period 1)  4.3692  ( 8.5472   )   -1.8561   
##    2. rate constant IS rate (period 2)  0.6769  ( 0.5581   )    0.5856   
##    3. rate constant IS rate (period 4)  2.4800  ( 4.1263   )   -0.2986   
##    4. rate constant IS rate (period 5)  1.9077  ( 1.5701   )    0.1026   
##    5. rate constant IS rate (period 7)  3.8571  ( 2.9802   )   -0.6101   
##    6. rate constant IS rate (period 8)  1.6316  ( 0.9466   )    0.8369   
##    7. eval outdegree (density)         -0.3923  ( 0.5194   )   -1.0950   
##    8. eval reciprocity                  0.0000  ( 0.6030   )   -2.4426   
##    9. eval transitive triplets          0.0000  ( 0.4048   )   -2.7710   
##   10. eval val                          0.0000  ( 0.2183   )   -3.3581   
##   11. eval ae ego                       0.0000  ( 0.5176   )   -0.9638   
## 
## Overall maximum convergence ratio:    5.4349 
## 
## 
## Total of 500 iteration steps.
## 
## 3.063 
## improveMH
## Desired acceptances 25 .
## ..........
##  1 .           28.9  31.3  26.4  20.9  19.5 
##  multipliers   1.091 1.146 1.032 0.904 0.872 
##  scaleFactors  0.779 0.818 0.737 0.646 0.623 
## ..........
##  2 .           30.8  25.9  26.0  24.2  27.3 
##  multipliers   1.112 1.017 1.019 0.985 1.044 
##  scaleFactors  0.867 0.832 0.751 0.636 0.651 
## ..........
##  3 .           28.1  24.0  26.9  24.1  26.9 
##  multipliers   1.054 0.983 1.033 0.983 1.033 
##  scaleFactors  0.913 0.818 0.776 0.625 0.672 
## fine tuning took  3  iterations.
## improveMH 3.859 seconds.
## .Warming step 1 ( 20 )
## Accepts  12 / 30 
## .Warming step 2 ( 20 )
## Accepts  15 / 30 
## .Warming step 3 ( 20 )
## Accepts  12 / 30 
## .Warming step 4 ( 20 )
## Accepts  14 / 30 
## .Warming step 5 ( 20 )
## Accepts  11 / 30 
## .Warming step 6 ( 20 )
## Accepts  13 / 30 
## .Warming step 7 ( 20 )
## Accepts  14 / 30 
## .Warming step 8 ( 20 )
## Accepts  10 / 30 
## .Warming step 9 ( 20 )
## Accepts  15 / 30 
## .Warming step 10 ( 20 )
## Accepts  12 / 30 
## .Warming step 11 ( 20 )
## Accepts  15 / 30 
## .Warming step 12 ( 20 )
## Accepts  9 / 30 
## .Warming step 13 ( 20 )
## Accepts  10 / 30 
## .Warming step 14 ( 20 )
## Accepts  17 / 30 
## .Warming step 15 ( 20 )
## Accepts  13 / 30 
## .Warming step 16 ( 20 )
## Accepts  13 / 30 
## .Warming step 17 ( 20 )
## Accepts  12 / 30 
## .Warming step 18 ( 20 )
## Accepts  13 / 30 
## .Warming step 19 ( 20 )
## Accepts  17 / 30 
## .Warming step 20 ( 20 )
## Accepts  17 / 30 
## [1] "end of warming"
## warming took 2.826 seconds.
## Parameter values after warming up
## 1 .      3.191      1.903      0.209     -0.209     -0.068      1.509      0.602 
## 2 .      3.167      1.953     -1.767      0.323     -0.068      1.509      0.602 
## 3 .      3.764      2.107     -0.587     -0.016     -0.068      1.509      0.602 
## 
## Second improveMH
## Desired acceptances 25 .
## ..........
##  1 .           12.7  33.4  25.1  21.0  20.5 
##  multipliers   0.500 1.194 1.003 0.909 0.895 
##  scaleFactors  0.457 0.977 0.778 0.568 0.602 
## ..........
##  2 .           37.4  18.8  23.0  19.3  18.7 
##  multipliers   2.000 0.879 0.961 0.889 0.878 
##  scaleFactors  0.913 0.859 0.748 0.505 0.528 
## ..........
##  3 .           23.7  20.6  22.9  20.6  19.0 
##  multipliers   0.977 0.922 0.964 0.923 0.894 
##  scaleFactors  0.892 0.793 0.721 0.467 0.472 
## ..........
##  4 .           25.2  23.9  24.4  22.9  20.7 
##  multipliers   1.004 0.982 0.991 0.966 0.930 
##  scaleFactors  0.896 0.778 0.714 0.451 0.439 
## fine tuning took  4  iterations.
## Second improveMH 4.352 seconds.
## .main 21 ( 120 )
## Mu =  3.27 1.887 -0.385 -0.158 
## Eta =  0.148 1.356 0.76 
## Sigma = 
##         [,1]    [,2]    [,3]    [,4]
## [1,]  3.7093 -2.3122  0.4678 -0.1485
## [2,] -2.3122  1.8772 -0.5272  0.1039
## [3,]  0.4678 -0.5272  0.5959 -0.0316
## [4,] -0.1485  0.1039 -0.0316  0.8100
## 
## main 21 ( 120 )  Accepts  12 / 30 
## .main 22 ( 120 )
## Mu =  2.583 2.548 -1.681 0.243 
## Eta =  0.01 1.607 0.529 
## Sigma = 
##         [,1]    [,2]    [,3]    [,4]
## [1,]  1.4375 -0.5439  0.2369  0.2697
## [2,] -0.5439  0.9934 -0.1142 -0.0393
## [3,]  0.2369 -0.1142  0.8506 -1.1766
## [4,]  0.2697 -0.0393 -1.1766  3.3245
## 
## main 22 ( 120 )  Accepts  15 / 30 
## .main 23 ( 120 )
## Mu =  2.931 1.575 -0.328 -1.232 
## Eta =  0.307 1.995 0.592 
## Sigma = 
##         [,1]    [,2]   [,3]    [,4]
## [1,]  1.2833 -0.7138 0.4953 -0.4316
## [2,] -0.7138  1.2250 0.4650  1.2953
## [3,]  0.4953  0.4650 1.4899  0.9540
## [4,] -0.4316  1.2953 0.9540  2.1557
## 
## main 23 ( 120 )  Accepts  18 / 30 
## .main 24 ( 120 )
## Mu =  2.834 2.223 -0.93 0.447 
## Eta =  0.245 2.103 0.592 
## Sigma = 
##         [,1]    [,2]    [,3]    [,4]
## [1,]  1.3226 -0.8757  0.1285  0.1236
## [2,] -0.8757  1.0122 -0.2757  0.3604
## [3,]  0.1285 -0.2757  2.1650 -0.9650
## [4,]  0.1236  0.3604 -0.9650  1.5566
## 
## main 24 ( 120 )  Accepts  17 / 30 
## .main 25 ( 120 )
## Mu =  3.437 1.439 -1.299 -1.198 
## Eta =  0.242 1.904 -0.638 
## Sigma = 
##         [,1]    [,2]    [,3]    [,4]
## [1,]  1.9552 -1.3430 -0.3804 -0.9419
## [2,] -1.3430  1.1288  0.1325  0.6427
## [3,] -0.3804  0.1325  2.1029  0.1636
## [4,] -0.9419  0.6427  0.1636  1.3234
## 
## main 25 ( 120 )  Accepts  11 / 30 
## .main 26 ( 120 )
## Mu =  4.021 2.044 -0.016 0.289 
## Eta =  -0.032 1.706 -0.277 
## Sigma = 
##         [,1]    [,2]    [,3]    [,4]
## [1,]  7.3597 -3.5528 -2.7595 -0.4249
## [2,] -3.5528  2.3925  0.6177  1.1641
## [3,] -2.7595  0.6177  3.0241 -0.6753
## [4,] -0.4249  1.1641 -0.6753  2.2380
## 
## main 26 ( 120 )  Accepts  10 / 30 
## .main 27 ( 120 )
## Mu =  1.999 3.026 -0.785 -0.35 
## Eta =  0.018 1.541 0.307 
## Sigma = 
##         [,1]    [,2]    [,3]    [,4]
## [1,]  0.9681 -0.5504  0.1662  0.3102
## [2,] -0.5504  0.5555 -0.1562  0.0211
## [3,]  0.1662 -0.1562  0.5901 -0.3207
## [4,]  0.3102  0.0211 -0.3207  2.1247
## 
## main 27 ( 120 )  Accepts  19 / 30 
## .main 28 ( 120 )
## Mu =  2.133 2.577 -0.455 0.184 
## Eta =  0.231 0.874 0.537 
## Sigma = 
##         [,1]    [,2]    [,3]    [,4]
## [1,]  7.0824 -3.4254 -1.0762 -1.6512
## [2,] -3.4254  1.7849  0.3847  0.8316
## [3,] -1.0762  0.3847  2.0067 -0.4439
## [4,] -1.6512  0.8316 -0.4439  1.1851
## 
## main 28 ( 120 )  Accepts  14 / 30 
## .main 29 ( 120 )
## Mu =  2.078 3.034 -1.056 0.847 
## Eta =  0.205 0.824 0.688 
## Sigma = 
##         [,1]    [,2]    [,3]    [,4]
## [1,]  1.4137 -1.2053  0.4377 -0.3863
## [2,] -1.2053  1.8303 -0.2436  0.3274
## [3,]  0.4377 -0.2436  0.6737 -0.3018
## [4,] -0.3863  0.3274 -0.3018  1.1355
## 
## main 29 ( 120 )  Accepts  9 / 30 
## .main 30 ( 120 )
## Mu =  1.965 2.108 0.448 0.325 
## Eta =  0.268 0.848 0.012 
## Sigma = 
##         [,1]    [,2]    [,3]    [,4]
## [1,]  7.3484 -2.1829 -3.1312  0.5508
## [2,] -2.1829  1.9974 -0.2655  0.4124
## [3,] -3.1312 -0.2655  3.0505 -0.5283
## [4,]  0.5508  0.4124 -0.5283  1.0116
## 
## main 30 ( 120 )  Accepts  14 / 30 
## .main 31 ( 120 )
## Mu =  4.171 1.857 -2.527 0.78 
## Eta =  -0.022 0.612 0.578 
## Sigma = 
##         [,1]    [,2]    [,3]    [,4]
## [1,]  2.8870  0.3432 -2.2945 -1.9923
## [2,]  0.3432  1.3984 -1.6894 -0.2000
## [3,] -2.2945 -1.6894  5.0801  1.2633
## [4,] -1.9923 -0.2000  1.2633  2.2479
## 
## main 31 ( 120 )  Accepts  15 / 30 
## .main 32 ( 120 )
## Mu =  3.388 1.599 -0.23 -0.296 
## Eta =  0.207 0.736 -0.377 
## Sigma = 
##         [,1]    [,2]    [,3]    [,4]
## [1,]  1.4834 -0.9647  0.1493 -0.3601
## [2,] -0.9647  1.3497  0.6786  0.0046
## [3,]  0.1493  0.6786  2.0015 -1.5445
## [4,] -0.3601  0.0046 -1.5445  2.5233
## 
## main 32 ( 120 )  Accepts  12 / 30 
## .main 33 ( 120 )
## Mu =  2.504 2.234 -1.275 1.214 
## Eta =  0.368 0.735 -1.019 
## Sigma = 
##         [,1]    [,2]    [,3]    [,4]
## [1,]  3.0590 -2.0792  1.1115 -2.7057
## [2,] -2.0792  1.6012 -0.7978  1.9044
## [3,]  1.1115 -0.7978  1.0641 -0.9471
## [4,] -2.7057  1.9044 -0.9471  4.0325
## 
## main 33 ( 120 )  Accepts  10 / 30 
## .main 34 ( 120 )
## Mu =  3.676 0.72 0.62 -0.264 
## Eta =  0.399 1.031 -1.159 
## Sigma = 
##         [,1]    [,2]    [,3]    [,4]
## [1,]  1.5024 -1.0557  1.0444 -0.6818
## [2,] -1.0557  3.2474 -3.1252  0.7216
## [3,]  1.0444 -3.1252  5.7090 -0.9137
## [4,] -0.6818  0.7216 -0.9137  0.8983
## 
## main 34 ( 120 )  Accepts  22 / 30 
## .main 35 ( 120 )
## Mu =  4.402 0.064 -0.971 0.101 
## Eta =  0.135 0.96 -1.368 
## Sigma = 
##         [,1]    [,2]    [,3]    [,4]
## [1,]  2.3808 -2.6563 -0.3145 -0.8927
## [2,] -2.6563  4.4449 -2.1335  0.0557
## [3,] -0.3145 -2.1335  5.7321  1.7237
## [4,] -0.8927  0.0557  1.7237  1.7044
## 
## main 35 ( 120 )  Accepts  16 / 30 
## .main 36 ( 120 )
## Mu =  3.132 0.978 -0.634 0.977 
## Eta =  -0.023 1.397 -1.293 
## Sigma = 
##         [,1]    [,2]    [,3]    [,4]
## [1,]  1.2487 -0.5076  0.2043  0.1416
## [2,] -0.5076  0.6180 -0.1463 -0.2305
## [3,]  0.2043 -0.1463  0.4776 -0.0642
## [4,]  0.1416 -0.2305 -0.0642  0.3903
## 
## main 36 ( 120 )  Accepts  18 / 30 
## .main 37 ( 120 )
## Mu =  2.838 3.255 -1.206 1.839 
## Eta =  -0.696 1.401 -0.199 
## Sigma = 
##         [,1]    [,2]    [,3]    [,4]
## [1,]  1.9241 -1.7007 -0.0229  0.3628
## [2,] -1.7007  2.3077 -0.5553 -0.1052
## [3,] -0.0229 -0.5553  2.5107 -0.4782
## [4,]  0.3628 -0.1052 -0.4782  0.8093
## 
## main 37 ( 120 )  Accepts  18 / 30 
## .main 38 ( 120 )
## Mu =  2.994 0.975 -0.52 0.207 
## Eta =  -0.591 1.294 0.447 
## Sigma = 
##         [,1]    [,2]    [,3]    [,4]
## [1,]  2.4246 -4.3730  3.5832 -3.3526
## [2,] -4.3730 10.6151 -7.5113  6.2501
## [3,]  3.5832 -7.5113  8.5949 -7.4885
## [4,] -3.3526  6.2501 -7.4885  7.5246
## 
## main 38 ( 120 )  Accepts  17 / 30 
## .main 39 ( 120 )
## Mu =  2.942 2.84 -0.192 -1.349 
## Eta =  -0.313 1.552 0.351 
## Sigma = 
##         [,1]    [,2]    [,3]    [,4]
## [1,]  2.1104 -1.5107 -0.3209 -0.6352
## [2,] -1.5107  1.9760 -0.0771  0.0140
## [3,] -0.3209 -0.0771  1.6957  0.7068
## [4,] -0.6352  0.0140  0.7068  1.9955
## 
## main 39 ( 120 )  Accepts  18 / 30 
## .main 40 ( 120 )
## Mu =  2.479 2.46 -0.875 0.495 
## Eta =  -0.215 1.547 0.057 
## Sigma = 
##         [,1]    [,2]    [,3]    [,4]
## [1,]  1.1865 -0.9547  1.1672 -0.0759
## [2,] -0.9547  1.1833 -1.3159  0.0820
## [3,]  1.1672 -1.3159  3.6424  0.4185
## [4,] -0.0759  0.0820  0.4185  0.8132
## 
## main 40 ( 120 )  Accepts  16 / 30 
## .main 41 ( 120 )
## Mu =  3.082 1.973 0.612 0.316 
## Eta =  -0.308 1.757 -0.015 
## Sigma = 
##        [,1]   [,2]   [,3]   [,4]
## [1,]  2.600 -1.332  0.622  0.278
## [2,] -1.332  1.023 -0.696 -0.027
## [3,]  0.622 -0.696  2.325 -0.358
## [4,]  0.278 -0.027 -0.358  1.194
## 
## main 41 ( 120 )  Accepts  13 / 30 
## .main 42 ( 120 )
## Mu =  2.42 2.593 -0.674 0.776 
## Eta =  -0.281 1.569 0.39 
## Sigma = 
##        [,1]   [,2]   [,3]   [,4]
## [1,]  1.856 -1.737  0.709 -1.055
## [2,] -1.737  2.167 -0.819  1.911
## [3,]  0.709 -0.819  1.130 -1.105
## [4,] -1.055  1.911 -1.105  3.676
## 
## main 42 ( 120 )  Accepts  14 / 30 
## .main 43 ( 120 )
## Mu =  2.759 1.709 -0.644 1.319 
## Eta =  0.469 1.991 1.049 
## Sigma = 
##        [,1]   [,2]   [,3]   [,4]
## [1,]  2.403 -1.565  0.137 -1.441
## [2,] -1.565  1.462  0.446  0.415
## [3,]  0.137  0.446  1.983 -0.646
## [4,] -1.441  0.415 -0.646  2.301
## 
## main 43 ( 120 )  Accepts  17 / 30 
## .main 44 ( 120 )
## Mu =  2.838 2.033 -0.061 0.211 
## Eta =  0.324 1.97 1.343 
## Sigma = 
##        [,1]   [,2]   [,3]   [,4]
## [1,]  1.151 -0.272  0.262  0.206
## [2,] -0.272  0.545  0.151  0.048
## [3,]  0.262  0.151  2.843 -0.861
## [4,]  0.206  0.048 -0.861  1.117
## 
## main 44 ( 120 )  Accepts  15 / 30 
## .main 45 ( 120 )
## Mu =  1.93 2.843 -1.239 1.224 
## Eta =  0.138 1.652 0.529 
## Sigma = 
##        [,1]   [,2]   [,3]   [,4]
## [1,]  0.903 -0.386  0.095 -0.022
## [2,] -0.386  0.400  0.030  0.003
## [3,]  0.095  0.030  0.954 -0.226
## [4,] -0.022  0.003 -0.226  0.875
## 
## main 45 ( 120 )  Accepts  21 / 30 
## .main 46 ( 120 )
## Mu =  2.957 2.902 0.129 0.719 
## Eta =  0.297 1.703 0.442 
## Sigma = 
##        [,1]   [,2]   [,3]   [,4]
## [1,]  3.387 -1.833  2.289 -0.152
## [2,] -1.833  1.781 -1.509  0.041
## [3,]  2.289 -1.509  2.637  0.200
## [4,] -0.152  0.041  0.200  0.625
## 
## main 46 ( 120 )  Accepts  15 / 30 
## .main 47 ( 120 )
## Mu =  2.9 2.998 -0.478 -0.103 
## Eta =  0.157 1.854 0.622 
## Sigma = 
##        [,1]   [,2]   [,3]   [,4]
## [1,]  1.197  0.350  0.501 -0.962
## [2,]  0.350  1.786  0.339 -1.269
## [3,]  0.501  0.339  0.804 -0.558
## [4,] -0.962 -1.269 -0.558  4.758
## 
## main 47 ( 120 )  Accepts  15 / 30 
## .main 48 ( 120 )
## Mu =  1.779 1.905 0.007 0.063 
## Eta =  0.289 0.981 0.697 
## Sigma = 
##        [,1]   [,2]   [,3]   [,4]
## [1,]  2.974 -0.986  0.053 -0.587
## [2,] -0.986  1.544 -0.501  0.497
## [3,]  0.053 -0.501  1.132 -1.084
## [4,] -0.587  0.497 -1.084  1.928
## 
## main 48 ( 120 )  Accepts  19 / 30 
## .main 49 ( 120 )
## Mu =  3.779 0.873 1.102 0.275 
## Eta =  0.298 1.234 0.525 
## Sigma = 
##        [,1]   [,2]   [,3]   [,4]
## [1,]  3.430 -2.285 -0.936 -0.001
## [2,] -2.285  2.019  0.449 -0.260
## [3,] -0.936  0.449  2.100 -0.253
## [4,] -0.001 -0.260 -0.253  1.233
## 
## main 49 ( 120 )  Accepts  14 / 30 
## .main 50 ( 120 )
## Mu =  2.422 2.481 -1.114 1.411 
## Eta =  -0.058 1.762 0.296 
## Sigma = 
##        [,1]   [,2]   [,3]   [,4]
## [1,]  0.934 -0.976 -0.011 -0.051
## [2,] -0.976  2.411 -0.093  0.608
## [3,] -0.011 -0.093  0.488 -0.126
## [4,] -0.051  0.608 -0.126  1.096
## 
## main 50 ( 120 )  Accepts  19 / 30 
## .main 51 ( 120 )
## Mu =  2.312 2.619 -0.359 -1.386 
## Eta =  -0.23 1.997 -0.061 
## Sigma = 
##        [,1]   [,2]   [,3]   [,4]
## [1,]  3.283 -2.223  0.403 -0.698
## [2,] -2.223  2.278 -0.317  1.095
## [3,]  0.403 -0.317  0.630  0.097
## [4,] -0.698  1.095  0.097  2.275
## 
## main 51 ( 120 )  Accepts  10 / 30 
## .main 52 ( 120 )
## Mu =  2.427 2.04 1.011 -0.588 
## Eta =  -0.318 1.761 0.389 
## Sigma = 
##        [,1]   [,2]   [,3]   [,4]
## [1,]  0.323 -0.108 -0.089  0.149
## [2,] -0.108  0.610 -0.339  0.009
## [3,] -0.089 -0.339  3.735 -0.365
## [4,]  0.149  0.009 -0.365  0.841
## 
## main 52 ( 120 )  Accepts  14 / 30 
## .main 53 ( 120 )
## Mu =  2.954 2.123 0.561 0.238 
## Eta =  -0.663 1.97 -0.797 
## Sigma = 
##        [,1]   [,2]   [,3]  [,4]
## [1,]  1.157 -0.059 -0.146 0.038
## [2,] -0.059  4.047  1.118 3.086
## [3,] -0.146  1.118  1.865 0.700
## [4,]  0.038  3.086  0.700 2.821
## 
## main 53 ( 120 )  Accepts  14 / 30 
## .main 54 ( 120 )
## Mu =  2.854 1.769 -0.166 -0.605 
## Eta =  -0.46 1.979 -0.698 
## Sigma = 
##        [,1]   [,2]   [,3]   [,4]
## [1,]  1.824 -0.802 -0.484  0.471
## [2,] -0.802  0.672  0.022 -0.240
## [3,] -0.484  0.022  1.477  0.010
## [4,]  0.471 -0.240  0.010  0.815
## 
## main 54 ( 120 )  Accepts  11 / 30 
## .main 55 ( 120 )
## Mu =  2.715 2.19 -0.256 -0.175 
## Eta =  -0.128 1.851 0.479 
## Sigma = 
##        [,1]   [,2]   [,3]   [,4]
## [1,]  3.138 -1.132 -0.247  0.285
## [2,] -1.132  0.609  0.162 -0.236
## [3,] -0.247  0.162  0.550 -0.017
## [4,]  0.285 -0.236 -0.017  0.763
## 
## main 55 ( 120 )  Accepts  15 / 30 
## .main 56 ( 120 )
## Mu =  2.985 1.347 -0.497 1.516 
## Eta =  0.036 1.705 1.417 
## Sigma = 
##        [,1]   [,2]   [,3]   [,4]
## [1,]  3.138 -0.891  0.460 -0.499
## [2,] -0.891  1.509  0.579 -0.700
## [3,]  0.460  0.579  0.893 -0.587
## [4,] -0.499 -0.700 -0.587  1.183
## 
## main 56 ( 120 )  Accepts  13 / 30 
## .main 57 ( 120 )
## Mu =  2.493 2.101 -0.002 0.39 
## Eta =  0.319 1.428 1.336 
## Sigma = 
##        [,1]   [,2]  [,3]   [,4]
## [1,]  0.798 -0.606 0.082 -0.127
## [2,] -0.606  1.152 0.046 -0.149
## [3,]  0.082  0.046 1.699  0.200
## [4,] -0.127 -0.149 0.200  0.621
## 
## main 57 ( 120 )  Accepts  16 / 30 
## .main 58 ( 120 )
## Mu =  3.052 1.819 -1.602 -0.856 
## Eta =  0.215 1.388 1.131 
## Sigma = 
##        [,1]   [,2]   [,3]   [,4]
## [1,]  1.786 -0.963 -0.939 -2.466
## [2,] -0.963  2.246  0.676  4.318
## [3,] -0.939  0.676  1.310  2.503
## [4,] -2.466  4.318  2.503 11.575
## 
## main 58 ( 120 )  Accepts  23 / 30 
## .main 59 ( 120 )
## Mu =  2.519 1.808 -0.918 -0.2 
## Eta =  0.744 1.653 0.417 
## Sigma = 
##        [,1]   [,2]   [,3]   [,4]
## [1,]  0.666 -0.024 -0.298 -0.517
## [2,] -0.024  0.715  0.484 -0.682
## [3,] -0.298  0.484  2.297  0.076
## [4,] -0.517 -0.682  0.076  1.458
## 
## main 59 ( 120 )  Accepts  13 / 30 
## .main 60 ( 120 )
## Mu =  3.072 1.629 -0.749 0.493 
## Eta =  1 1.442 0.195 
## Sigma = 
##        [,1]   [,2]   [,3]   [,4]
## [1,]  1.350 -0.434  0.416 -0.222
## [2,] -0.434  0.301 -0.087 -0.003
## [3,]  0.416 -0.087  0.610 -0.139
## [4,] -0.222 -0.003 -0.139  0.585
## 
## main 60 ( 120 )  Accepts  15 / 30 
## .main 61 ( 120 )
## Mu =  3.389 1.77 -0.572 0.777 
## Eta =  0.457 1.574 0.257 
## Sigma = 
##        [,1]   [,2]   [,3]   [,4]
## [1,]  1.795 -1.500  0.508  0.266
## [2,] -1.500  1.539 -0.312 -0.481
## [3,]  0.508 -0.312  0.845 -0.270
## [4,]  0.266 -0.481 -0.270  1.002
## 
## main 61 ( 120 )  Accepts  15 / 30 
## .main 62 ( 120 )
## Mu =  3.066 2.585 -1.123 0.717 
## Eta =  0.473 1.71 0.26 
## Sigma = 
##        [,1]   [,2]   [,3]   [,4]
## [1,]  1.042 -0.813  0.508 -0.609
## [2,] -0.813  1.066 -0.507  0.690
## [3,]  0.508 -0.507  0.991 -0.971
## [4,] -0.609  0.690 -0.971  1.709
## 
## main 62 ( 120 )  Accepts  11 / 30 
## .main 63 ( 120 )
## Mu =  2.387 2.959 -1.189 -0.689 
## Eta =  0.422 2.157 0.279 
## Sigma = 
##        [,1]   [,2]   [,3]   [,4]
## [1,]  0.585 -0.177  0.313  0.184
## [2,] -0.177  0.344 -0.017 -0.132
## [3,]  0.313 -0.017  1.239 -0.264
## [4,]  0.184 -0.132 -0.264  1.084
## 
## main 63 ( 120 )  Accepts  16 / 30 
## .main 64 ( 120 )
## Mu =  2.976 2.405 -0.529 -0.174 
## Eta =  0.218 1.892 0.126 
## Sigma = 
##        [,1]   [,2]   [,3]   [,4]
## [1,]  2.771 -1.702  0.244 -1.904
## [2,] -1.702  1.585 -0.116  0.816
## [3,]  0.244 -0.116  0.535 -0.580
## [4,] -1.904  0.816 -0.580  2.748
## 
## main 64 ( 120 )  Accepts  12 / 30 
## .main 65 ( 120 )
## Mu =  2.492 3.009 -0.53 1.394 
## Eta =  0.114 2.104 -0.798 
## Sigma = 
##        [,1]   [,2]   [,3]   [,4]
## [1,]  1.592 -0.728 -0.008 -0.841
## [2,] -0.728  1.231 -0.669 -0.284
## [3,] -0.008 -0.669  1.747 -0.198
## [4,] -0.841 -0.284 -0.198  4.201
## 
## main 65 ( 120 )  Accepts  15 / 30 
## .main 66 ( 120 )
## Mu =  1.811 1.729 -1.968 -3.092 
## Eta =  -0.005 1.864 0.321 
## Sigma = 
##        [,1]   [,2]  [,3]   [,4]
## [1,]  3.357 -0.630 2.860  5.051
## [2,] -0.630  1.620 0.240  2.744
## [3,]  2.860  0.240 3.888  6.692
## [4,]  5.051  2.744 6.692 18.372
## 
## main 66 ( 120 )  Accepts  20 / 30 
## .main 67 ( 120 )
## Mu =  2.29 2.273 -1.276 2.118 
## Eta =  0.146 1.476 0.903 
## Sigma = 
##        [,1]   [,2]   [,3]   [,4]
## [1,]  1.151 -0.741  1.024  0.182
## [2,] -0.741  1.292 -0.495 -0.737
## [3,]  1.024 -0.495  1.939  0.542
## [4,]  0.182 -0.737  0.542  2.767
## 
## main 67 ( 120 )  Accepts  11 / 30 
## .main 68 ( 120 )
## Mu =  2.21 2.395 -0.516 0.492 
## Eta =  0.303 1.257 -0.025 
## Sigma = 
##        [,1]   [,2]   [,3]   [,4]
## [1,]  0.549 -0.320  0.193 -0.277
## [2,] -0.320  0.427  0.026  0.065
## [3,]  0.193  0.026  1.800 -0.213
## [4,] -0.277  0.065 -0.213  1.055
## 
## main 68 ( 120 )  Accepts  12 / 30 
## .main 69 ( 120 )
## Mu =  2.581 2.417 -0.442 1.004 
## Eta =  0.074 1.409 -0.818 
## Sigma = 
##        [,1]   [,2]   [,3]   [,4]
## [1,]  1.625 -0.704 -0.142 -0.001
## [2,] -0.704  1.143 -0.500  0.956
## [3,] -0.142 -0.500  1.052 -1.035
## [4,] -0.001  0.956 -1.035  2.012
## 
## main 69 ( 120 )  Accepts  11 / 30 
## .main 70 ( 120 )
## Mu =  2.919 2.497 -0.506 0.572 
## Eta =  -0.054 1.631 -0.571 
## Sigma = 
##        [,1]   [,2]   [,3]   [,4]
## [1,]  0.523 -0.230  0.390  0.398
## [2,] -0.230  0.518 -0.184 -0.114
## [3,]  0.390 -0.184  1.031 -0.114
## [4,]  0.398 -0.114 -0.114  2.960
## 
## main 70 ( 120 )  Accepts  14 / 30 
## .main 71 ( 120 )
## Mu =  3.195 1.955 -0.985 1.269 
## Eta =  -0.174 1.814 -1.35 
## Sigma = 
##        [,1]   [,2]   [,3]   [,4]
## [1,]  1.854 -1.742 -0.788 -1.346
## [2,] -1.742  2.250  0.947  1.206
## [3,] -0.788  0.947  1.321  0.502
## [4,] -1.346  1.206  0.502  1.732
## 
## main 71 ( 120 )  Accepts  13 / 30 
## .main 72 ( 120 )
## Mu =  3.33 1.438 -1.078 1.16 
## Eta =  0.069 2.152 -1.184 
## Sigma = 
##        [,1]   [,2]   [,3]   [,4]
## [1,]  1.490 -0.722  1.743  1.220
## [2,] -0.722  1.084 -0.217 -0.140
## [3,]  1.743 -0.217  4.599  2.474
## [4,]  1.220 -0.140  2.474  2.659
## 
## main 72 ( 120 )  Accepts  20 / 30 
## .main 73 ( 120 )
## Mu =  2.699 2.857 -0.469 1.606 
## Eta =  0.646 2.211 -0.435 
## Sigma = 
##        [,1]   [,2]   [,3]   [,4]
## [1,]  1.122 -0.505  0.443  0.266
## [2,] -0.505  0.868 -0.577  0.050
## [3,]  0.443 -0.577  1.574 -0.200
## [4,]  0.266  0.050 -0.200  1.218
## 
## main 73 ( 120 )  Accepts  17 / 30 
## .main 74 ( 120 )
## Mu =  4.419 1.6 -1.217 2.881 
## Eta =  -0.011 2.251 -0.671 
## Sigma = 
##        [,1]   [,2]   [,3]   [,4]
## [1,]  2.789 -1.232 -0.678  2.246
## [2,] -1.232  1.918  0.602 -1.942
## [3,] -0.678  0.602  1.334 -1.041
## [4,]  2.246 -1.942 -1.041  5.182
## 
## main 74 ( 120 )  Accepts  16 / 30 
## .main 75 ( 120 )
## Mu =  3.218 2.29 -1.112 0.51 
## Eta =  0.101 2.087 -0.86 
## Sigma = 
##        [,1]   [,2]   [,3]   [,4]
## [1,]  1.547 -0.584 -0.343  0.362
## [2,] -0.584  0.519 -0.018  0.106
## [3,] -0.343 -0.018  0.666 -0.503
## [4,]  0.362  0.106 -0.503  1.496
## 
## main 75 ( 120 )  Accepts  11 / 30 
## .main 76 ( 120 )
## Mu =  3.316 2.194 -0.2 2.343 
## Eta =  -0.198 2.109 -0.493 
## Sigma = 
##        [,1]   [,2]   [,3]   [,4]
## [1,]  2.347 -0.472 -0.051 -0.484
## [2,] -0.472  0.737  0.093  0.006
## [3,] -0.051  0.093  0.758  0.190
## [4,] -0.484  0.006  0.190  1.111
## 
## main 76 ( 120 )  Accepts  12 / 30 
## .main 77 ( 120 )
## Mu =  2.352 3.198 -2.02 1.84 
## Eta =  -0.375 1.98 -0.493 
## Sigma = 
##        [,1]   [,2]   [,3]   [,4]
## [1,]  5.181 -2.539  2.354 -0.635
## [2,] -2.539  1.951 -1.283  0.548
## [3,]  2.354 -1.283  2.649  0.005
## [4,] -0.635  0.548  0.005  1.175
## 
## main 77 ( 120 )  Accepts  19 / 30 
## .main 78 ( 120 )
## Mu =  4.77 1.965 -0.003 0.359 
## Eta =  -0.475 2.196 -0.468 
## Sigma = 
##        [,1]   [,2]   [,3]   [,4]
## [1,]  3.429 -0.991  1.762 -1.158
## [2,] -0.991  1.045  0.091  0.185
## [3,]  1.762  0.091  2.637 -1.456
## [4,] -1.158  0.185 -1.456  1.620
## 
## main 78 ( 120 )  Accepts  22 / 30 
## .main 79 ( 120 )
## Mu =  5.725 0.52 -0.48 0.153 
## Eta =  -1.05 2.222 -1.186 
## Sigma = 
##        [,1]   [,2]   [,3]   [,4]
## [1,]  5.374 -4.385  1.076 -3.862
## [2,] -4.385  4.749 -1.542  4.304
## [3,]  1.076 -1.542  1.139 -1.480
## [4,] -3.862  4.304 -1.480  5.240
## 
## main 79 ( 120 )  Accepts  18 / 30 
## .main 80 ( 120 )
## Mu =  3.132 3.298 -1.288 1.461 
## Eta =  -0.613 2.388 -1.182 
## Sigma = 
##        [,1]   [,2]   [,3]   [,4]
## [1,]  3.675 -1.856  0.814 -0.527
## [2,] -1.856  1.880 -0.944  0.858
## [3,]  0.814 -0.944  0.771 -0.337
## [4,] -0.527  0.858 -0.337  1.677
## 
## main 80 ( 120 )  Accepts  19 / 30 
## .main 81 ( 120 )
## Mu =  5.25 3.128 -0.275 0.526 
## Eta =  -0.752 2.473 -1.254 
## Sigma = 
##        [,1]   [,2]   [,3]   [,4]
## [1,]  7.746 -2.734  0.787 -3.064
## [2,] -2.734  2.528 -0.072  0.665
## [3,]  0.787 -0.072  1.491 -1.380
## [4,] -3.064  0.665 -1.380  2.958
## 
## main 81 ( 120 )  Accepts  14 / 30 
## .main 82 ( 120 )
## Mu =  3.913 2.041 -1.344 0.998 
## Eta =  -0.843 2.402 -1.645 
## Sigma = 
##        [,1]   [,2]   [,3]   [,4]
## [1,]  3.189 -1.191  0.694 -0.767
## [2,] -1.191  3.286  1.410 -0.769
## [3,]  0.694  1.410  2.764 -1.766
## [4,] -0.767 -0.769 -1.766  2.180
## 
## main 82 ( 120 )  Accepts  12 / 30 
## .main 83 ( 120 )
## Mu =  3.135 3.832 -0.224 1.547 
## Eta =  -0.566 2.592 -2.219 
## Sigma = 
##        [,1]   [,2]   [,3]   [,4]
## [1,]  2.537 -0.644  1.060 -0.652
## [2,] -0.644  2.089  0.256  0.384
## [3,]  1.060  0.256  1.585 -0.005
## [4,] -0.652  0.384 -0.005  0.686
## 
## main 83 ( 120 )  Accepts  13 / 30 
## .main 84 ( 120 )
## Mu =  2.567 3.871 -2.103 1.939 
## Eta =  -0.507 2.585 -2.157 
## Sigma = 
##        [,1]   [,2]   [,3]   [,4]
## [1,]  1.244 -0.405  1.098 -2.297
## [2,] -0.405  0.757 -0.192 -0.512
## [3,]  1.098 -0.192  2.120 -3.731
## [4,] -2.297 -0.512 -3.731 10.333
## 
## main 84 ( 120 )  Accepts  18 / 30 
## .main 85 ( 120 )
## Mu =  1.763 2.821 -0.779 0.564 
## Eta =  -0.272 2.524 -1.449 
## Sigma = 
##        [,1]   [,2]   [,3]   [,4]
## [1,]  2.748 -0.693  0.042  0.108
## [2,] -0.693  3.759 -0.298 -1.529
## [3,]  0.042 -0.298  0.385  0.108
## [4,]  0.108 -1.529  0.108  1.521
## 
## main 85 ( 120 )  Accepts  11 / 30 
## .main 86 ( 120 )
## Mu =  2.69 3.063 -1.293 0.622 
## Eta =  -0.132 2.21 -1.084 
## Sigma = 
##        [,1]   [,2]   [,3]   [,4]
## [1,]  0.815 -0.303  0.274 -0.095
## [2,] -0.303  1.642  0.677  0.120
## [3,]  0.274  0.677  2.104 -0.157
## [4,] -0.095  0.120 -0.157  0.714
## 
## main 86 ( 120 )  Accepts  15 / 30 
## .main 87 ( 120 )
## Mu =  2.594 2.785 -0.565 1.847 
## Eta =  -0.304 2.596 -1.449 
## Sigma = 
##        [,1]   [,2]   [,3]   [,4]
## [1,]  1.959 -0.584  0.113 -0.871
## [2,] -0.584  1.683  0.104  0.042
## [3,]  0.113  0.104  0.477 -0.319
## [4,] -0.871  0.042 -0.319  1.850
## 
## main 87 ( 120 )  Accepts  14 / 30 
## .main 88 ( 120 )
## Mu =  2.801 2.189 -0.613 1.583 
## Eta =  -0.122 2.597 -1.467 
## Sigma = 
##        [,1]   [,2]   [,3]   [,4]
## [1,]  2.129 -1.576 -0.065 -0.289
## [2,] -1.576  1.976  0.583  0.392
## [3,] -0.065  0.583  0.843  0.144
## [4,] -0.289  0.392  0.144  0.842
## 
## main 88 ( 120 )  Accepts  20 / 30 
## .main 89 ( 120 )
## Mu =  2.972 1.709 -0.354 0.436 
## Eta =  -0.028 2.701 -1.406 
## Sigma = 
##        [,1]   [,2]   [,3]   [,4]
## [1,]  4.264  0.556  0.933 -4.182
## [2,]  0.556  0.505  0.156 -0.893
## [3,]  0.933  0.156  1.009 -1.272
## [4,] -4.182 -0.893 -1.272  5.284
## 
## main 89 ( 120 )  Accepts  20 / 30 
## .main 90 ( 120 )
## Mu =  3.128 2.215 -0.59 0.832 
## Eta =  -0.256 2.367 -1.455 
## Sigma = 
##        [,1]   [,2]   [,3]   [,4]
## [1,]  1.904 -0.660  1.229 -0.847
## [2,] -0.660  0.540 -0.574  0.316
## [3,]  1.229 -0.574  2.262 -1.308
## [4,] -0.847  0.316 -1.308  1.321
## 
## main 90 ( 120 )  Accepts  18 / 30 
## .main 91 ( 120 )
## Mu =  4.529 0.686 1.214 0.195 
## Eta =  -0.184 2.077 -1.791 
## Sigma = 
##        [,1]   [,2]   [,3]   [,4]
## [1,]  4.680 -1.446  2.669 -1.818
## [2,] -1.446  0.672 -0.870  0.524
## [3,]  2.669 -0.870  2.039 -0.932
## [4,] -1.818  0.524 -0.932  1.975
## 
## main 91 ( 120 )  Accepts  14 / 30 
## .main 92 ( 120 )
## Mu =  3.386 1.228 -0.468 1.069 
## Eta =  -0.445 1.901 -1.565 
## Sigma = 
##        [,1]   [,2]   [,3]   [,4]
## [1,]  2.406 -1.413 -0.143 -0.374
## [2,] -1.413  0.993  0.051  0.163
## [3,] -0.143  0.051  1.542 -0.893
## [4,] -0.374  0.163 -0.893  2.430
## 
## main 92 ( 120 )  Accepts  12 / 30 
## .main 93 ( 120 )
## Mu =  4.407 1.468 0.035 0.955 
## Eta =  -0.526 1.797 -1.425 
## Sigma = 
##        [,1]   [,2]   [,3]   [,4]
## [1,]  4.025 -0.603  0.098  0.756
## [2,] -0.603  1.273 -0.501  0.408
## [3,]  0.098 -0.501  1.361 -1.591
## [4,]  0.756  0.408 -1.591  3.928
## 
## main 93 ( 120 )  Accepts  9 / 30 
## .main 94 ( 120 )
## Mu =  1.606 2.408 -1.437 1.652 
## Eta =  -0.958 1.76 -0.867 
## Sigma = 
##        [,1]   [,2]   [,3]   [,4]
## [1,]  0.660 -0.149  0.309 -0.255
## [2,] -0.149  0.443  0.775 -0.345
## [3,]  0.309  0.775  5.625 -1.985
## [4,] -0.255 -0.345 -1.985  1.295
## 
## main 94 ( 120 )  Accepts  17 / 30 
## .main 95 ( 120 )
## Mu =  2.242 2.138 0.258 1.08 
## Eta =  -0.645 1.716 -0.654 
## Sigma = 
##        [,1]   [,2]   [,3]   [,4]
## [1,]  1.312 -0.453 -0.199 -0.072
## [2,] -0.453  0.770  0.123 -0.097
## [3,] -0.199  0.123  0.626 -0.027
## [4,] -0.072 -0.097 -0.027  1.119
## 
## main 95 ( 120 )  Accepts  22 / 30 
## .main 96 ( 120 )
## Mu =  2.395 3.57 -0.283 0.908 
## Eta =  -0.611 1.89 -1.108 
## Sigma = 
##        [,1]   [,2]   [,3]   [,4]
## [1,]  3.070  0.552  1.059 -2.777
## [2,]  0.552  2.144  1.496 -2.129
## [3,]  1.059  1.496  3.651 -2.504
## [4,] -2.777 -2.129 -2.504  5.789
## 
## main 96 ( 120 )  Accepts  15 / 30 
## .main 97 ( 120 )
## Mu =  2.375 2.681 0.017 0.975 
## Eta =  -0.864 1.929 -1.242 
## Sigma = 
##        [,1]   [,2]   [,3]   [,4]
## [1,]  0.681 -0.284  0.031 -0.298
## [2,] -0.284  0.464 -0.441 -0.412
## [3,]  0.031 -0.441  1.463  0.802
## [4,] -0.298 -0.412  0.802  2.436
## 
## main 97 ( 120 )  Accepts  16 / 30 
## .main 98 ( 120 )
## Mu =  3.72 3.429 -0.587 0.257 
## Eta =  -0.624 2.391 -1.321 
## Sigma = 
##        [,1]   [,2]   [,3]   [,4]
## [1,]  2.832 -0.913 -1.337  0.833
## [2,] -0.913  2.660  1.098 -2.031
## [3,] -1.337  1.098  2.260 -1.173
## [4,]  0.833 -2.031 -1.173  2.530
## 
## main 98 ( 120 )  Accepts  14 / 30 
## .main 99 ( 120 )
## Mu =  2.335 3.284 -0.838 1.076 
## Eta =  0.226 2.351 -0.901 
## Sigma = 
##        [,1]   [,2]   [,3]   [,4]
## [1,]  0.999 -0.458  0.491 -0.833
## [2,] -0.458  1.336  0.064  0.384
## [3,]  0.491  0.064  1.134 -0.721
## [4,] -0.833  0.384 -0.721  1.402
## 
## main 99 ( 120 )  Accepts  16 / 30 
## .main 100 ( 120 )
## Mu =  3.926 2.242 0.014 0.299 
## Eta =  0.148 2.115 -1.094 
## Sigma = 
##        [,1]   [,2]   [,3]   [,4]
## [1,]  2.213 -2.862  0.180 -0.482
## [2,] -2.862  8.090  1.340  0.440
## [3,]  0.180  1.340  2.138 -0.007
## [4,] -0.482  0.440 -0.007  0.820
## 
## main 100 ( 120 )  Accepts  13 / 30 
## 
## Mu =  3.926 2.242 0.014 0.299 
## Eta =  0.148 2.115 -1.094 
## Sigma = 
##        [,1]   [,2]   [,3]   [,4]
## [1,]  2.213 -2.862  0.180 -0.482
## [2,] -2.862  8.090  1.340  0.440
## [3,]  0.180  1.340  2.138 -0.007
## [4,] -0.482  0.440 -0.007  0.820
## 
## .main 101 ( 120 )
## Mu =  2.727 2.537 -0.21 0.93 
## Eta =  -0.262 1.881 -0.36 
## Sigma = 
##        [,1]   [,2]   [,3]   [,4]
## [1,]  1.353 -0.616 -0.502 -0.775
## [2,] -0.616  1.226 -0.327 -0.231
## [3,] -0.502 -0.327  3.158  1.476
## [4,] -0.775 -0.231  1.476  1.896
## 
## main 101 ( 120 )  Accepts  15 / 30 
## .main 102 ( 120 )
## Mu =  2.055 3.071 -0.475 0.314 
## Eta =  -0.374 1.727 -1.054 
## Sigma = 
##        [,1]   [,2]   [,3]   [,4]
## [1,]  0.944 -0.579 -0.040  0.030
## [2,] -0.579  0.908  0.378 -0.890
## [3,] -0.040  0.378  0.867 -0.758
## [4,]  0.030 -0.890 -0.758  2.128
## 
## main 102 ( 120 )  Accepts  15 / 30 
## .main 103 ( 120 )
## Mu =  2.4 2.617 -1.224 1.031 
## Eta =  0.086 1.748 -0.874 
## Sigma = 
##        [,1]   [,2]   [,3]   [,4]
## [1,]  1.256 -1.247  0.381 -0.146
## [2,] -1.247  2.316  0.290 -0.751
## [3,]  0.381  0.290  1.285 -0.689
## [4,] -0.146 -0.751 -0.689  1.635
## 
## main 103 ( 120 )  Accepts  14 / 30 
## .main 104 ( 120 )
## Mu =  3 2.58 -1.309 1.455 
## Eta =  -0.218 1.6 -0.971 
## Sigma = 
##        [,1]   [,2]   [,3]   [,4]
## [1,]  6.614 -1.942  1.922 -0.310
## [2,] -1.942  0.939 -0.756  0.328
## [3,]  1.922 -0.756  1.350 -0.745
## [4,] -0.310  0.328 -0.745  2.356
## 
## main 104 ( 120 )  Accepts  12 / 30 
## .main 105 ( 120 )
## Mu =  2.053 1.93 -0.249 1.124 
## Eta =  -0.398 1.704 -0.496 
## Sigma = 
##        [,1]   [,2]   [,3]   [,4]
## [1,]  1.264  0.082  0.381 -0.996
## [2,]  0.082  0.930 -0.480 -0.734
## [3,]  0.381 -0.480  1.048 -0.130
## [4,] -0.996 -0.734 -0.130  2.573
## 
## main 105 ( 120 )  Accepts  13 / 30 
## .main 106 ( 120 )
## Mu =  2.128 3.059 -0.096 0.771 
## Eta =  -0.286 1.787 -0.141 
## Sigma = 
##        [,1]   [,2]   [,3]   [,4]
## [1,]  3.668 -2.529  4.004 -0.723
## [2,] -2.529  2.385 -2.190 -0.032
## [3,]  4.004 -2.190  7.939 -2.053
## [4,] -0.723 -0.032 -2.053  1.928
## 
## main 106 ( 120 )  Accepts  6 / 30 
## .main 107 ( 120 )
## Mu =  3.124 3.199 -0.135 -0.068 
## Eta =  -0.574 1.751 -0.402 
## Sigma = 
##        [,1]   [,2]   [,3]   [,4]
## [1,]  1.910 -1.135 -0.086 -1.000
## [2,] -1.135  1.181  0.059  0.708
## [3,] -0.086  0.059  0.591 -0.385
## [4,] -1.000  0.708 -0.385  2.970
## 
## main 107 ( 120 )  Accepts  18 / 30 
## .main 108 ( 120 )
## Mu =  2.29 2.665 -1.914 0.363 
## Eta =  -0.409 1.695 0.014 
## Sigma = 
##        [,1]   [,2]   [,3]   [,4]
## [1,]  1.638 -0.836 -0.110 -0.439
## [2,] -0.836  1.047  0.244  0.691
## [3,] -0.110  0.244  0.889  0.022
## [4,] -0.439  0.691  0.022  1.336
## 
## main 108 ( 120 )  Accepts  18 / 30 
## .main 109 ( 120 )
## Mu =  3.626 3.39 -0.893 1.659 
## Eta =  -0.124 1.492 -0.356 
## Sigma = 
##        [,1]   [,2]   [,3]   [,4]
## [1,]  0.994 -0.740  0.064 -0.054
## [2,] -0.740  2.392 -0.101  0.202
## [3,]  0.064 -0.101  1.038 -0.875
## [4,] -0.054  0.202 -0.875  2.041
## 
## main 109 ( 120 )  Accepts  12 / 30 
## .main 110 ( 120 )
## Mu =  2.963 2.815 -0.708 1.002 
## Eta =  0.171 1.652 -0.287 
## Sigma = 
##        [,1]   [,2]   [,3]   [,4]
## [1,]  0.878 -0.680  0.380 -0.493
## [2,] -0.680  1.758 -0.521 -0.006
## [3,]  0.380 -0.521  0.708 -0.176
## [4,] -0.493 -0.006 -0.176  2.647
## 
## main 110 ( 120 )  Accepts  10 / 30 
## .main 111 ( 120 )
## Mu =  2.583 2.983 -0.078 0.607 
## Eta =  -0.407 1.371 -0.12 
## Sigma = 
##        [,1]   [,2]  [,3]   [,4]
## [1,]  0.786 -0.115 0.057 -0.062
## [2,] -0.115  0.725 0.430  0.151
## [3,]  0.057  0.430 1.042  0.203
## [4,] -0.062  0.151 0.203  0.657
## 
## main 111 ( 120 )  Accepts  11 / 30 
## .main 112 ( 120 )
## Mu =  3.489 2.744 -0.622 0.706 
## Eta =  -0.388 1.643 -1.179 
## Sigma = 
##        [,1]   [,2]   [,3]   [,4]
## [1,]  1.465 -0.707  0.204 -0.265
## [2,] -0.707  1.395 -0.192 -0.418
## [3,]  0.204 -0.192  1.143  0.122
## [4,] -0.265 -0.418  0.122  1.119
## 
## main 112 ( 120 )  Accepts  14 / 30 
## .main 113 ( 120 )
## Mu =  2.909 2.758 -1.417 0.071 
## Eta =  -0.144 1.54 -0.56 
## Sigma = 
##        [,1]   [,2]   [,3]   [,4]
## [1,]  0.619 -0.078  0.247 -0.285
## [2,] -0.078  1.459  0.231  0.252
## [3,]  0.247  0.231  0.964 -0.362
## [4,] -0.285  0.252 -0.362  2.341
## 
## main 113 ( 120 )  Accepts  12 / 30 
## .main 114 ( 120 )
## Mu =  3.334 3.46 -0.096 0.763 
## Eta =  -0.06 1.592 -0.678 
## Sigma = 
##        [,1]   [,2]   [,3]   [,4]
## [1,]  0.532 -0.641  0.105 -0.219
## [2,] -0.641  2.345  0.258  1.082
## [3,]  0.105  0.258  0.791 -0.320
## [4,] -0.219  1.082 -0.320  1.738
## 
## main 114 ( 120 )  Accepts  15 / 30 
## .main 115 ( 120 )
## Mu =  3.045 2.521 -0.953 1.607 
## Eta =  -0.199 1.668 -0.424 
## Sigma = 
##        [,1]   [,2]   [,3]   [,4]
## [1,]  0.836 -0.422  0.365 -0.613
## [2,] -0.422  0.633 -0.284  0.193
## [3,]  0.365 -0.284  1.133 -0.196
## [4,] -0.613  0.193 -0.196  1.158
## 
## main 115 ( 120 )  Accepts  12 / 30 
## .main 116 ( 120 )
## Mu =  3.87 1.098 -0.408 0.765 
## Eta =  0 1.54 -0.246 
## Sigma = 
##        [,1]   [,2]   [,3]   [,4]
## [1,]  2.246 -1.611  0.025  0.586
## [2,] -1.611  1.698 -0.047 -0.184
## [3,]  0.025 -0.047  0.553  0.073
## [4,]  0.586 -0.184  0.073  1.390
## 
## main 116 ( 120 )  Accepts  13 / 30 
## .main 117 ( 120 )
## Mu =  2.573 1.918 -0.807 1.77 
## Eta =  0.23 1.661 0.028 
## Sigma = 
##        [,1]   [,2]   [,3]   [,4]
## [1,]  2.077 -0.675  1.658 -1.565
## [2,] -0.675  1.003 -1.366  1.502
## [3,]  1.658 -1.366  4.111 -3.307
## [4,] -1.565  1.502 -3.307  3.909
## 
## main 117 ( 120 )  Accepts  18 / 30 
## .main 118 ( 120 )
## Mu =  1.224 2.055 -0.042 0.573 
## Eta =  -0.26 1.273 -0.073 
## Sigma = 
##        [,1]   [,2]   [,3]   [,4]
## [1,]  2.628 -1.596  0.197 -2.076
## [2,] -1.596  1.648 -0.333  1.504
## [3,]  0.197 -0.333  0.754 -0.167
## [4,] -2.076  1.504 -0.167  2.456
## 
## main 118 ( 120 )  Accepts  13 / 30 
## .main 119 ( 120 )
## Mu =  2.941 1.627 0.374 0.335 
## Eta =  -0.27 1.174 -0.224 
## Sigma = 
##        [,1]   [,2]   [,3]   [,4]
## [1,]  1.776 -0.377  0.682 -1.403
## [2,] -0.377  4.625  1.042  0.210
## [3,]  0.682  1.042  1.053 -0.789
## [4,] -1.403  0.210 -0.789  3.609
## 
## main 119 ( 120 )  Accepts  15 / 30 
## .main 120 ( 120 )
## Mu =  2.703 1.622 -0.148 0.044 
## Eta =  0.099 1.348 0.136 
## Sigma = 
##        [,1]   [,2]   [,3]   [,4]
## [1,]  1.849 -0.185  0.308 -0.350
## [2,] -0.185  0.771  0.112 -0.505
## [3,]  0.308  0.112  0.445 -0.441
## [4,] -0.350 -0.505 -0.441  1.441
## 
## main 120 ( 120 )  Accepts  17 / 30 
## Total duration 27.661 seconds.
fit3
## Note: this summary does not contain a convergence check.
## 
## Groups:
##  Data1   Data2   Data3   
## 
## Posterior means and standard deviations for global mean parameters
## 
## Total number of runs in the results is  120 .
## Posterior means and standard deviations are averages over 100 MCMC runs (counted after thinning).
## 
##                                        Post.      Post.       cred.    cred.   p      varying  Post.    cred.   cred.   
##                                        mean       s.d.m.      from     to                      s.d.     from    to      
##    1. rate constant IS rate (period 1)  3.6732  ( 1.0260   )                                       NA       NA      NA  
##    2. rate constant IS rate (period 2)  1.5888  ( 0.6423   )                                       NA       NA      NA  
##    3. rate constant IS rate (period 4)  2.3249  ( 0.9326   )                                       NA       NA      NA  
##    4. rate constant IS rate (period 5)  2.6489  ( 0.9927   )                                       NA       NA      NA  
##    5. rate constant IS rate (period 7)  3.5080  ( 0.8519   )                                       NA       NA      NA  
##    6. rate constant IS rate (period 8)  2.0390  ( 0.6978   )                                       NA       NA      NA  
##    7. eval outdegree (density)         -0.5876  ( 0.6763   ) -1.9951  0.8253  0.14       +     1.3593   0.6909  2.3919  
##    8. eval reciprocity                  0.6002  ( 0.8778   ) -1.2934  2.0331  0.82       +     1.5340   0.7893  2.9998  
##    9. eval transitive triplets         -0.0925  ( 0.3830   ) -0.8541  0.5636  0.42       -         NA       NA      NA  
##   10. eval val                          1.7497  ( 0.4505   )  0.7779  2.5944  1.00       -         NA       NA      NA  
##   11. eval ae ego                      -0.3540  ( 0.8198   ) -1.7215  1.2387  0.37       -         NA       NA      NA  
## 
## Posterior mean of global covariance matrix (varying parameters)
##   2.2293  -1.0589   0.3356  -0.5119
##  -1.0589   1.6958  -0.2027   0.2898
##   0.3356  -0.2027   1.8478  -0.3966
##  -0.5119   0.2898  -0.3966   2.3531
## 
## Posterior standard deviations of elements of global covariance matrix
##   1.5725   0.9424   1.0294   1.1590
##   0.9424   1.4478   1.0486   1.1695
##   1.0294   1.0486   1.5153   1.3712
##   1.1590   1.1695   1.3712   2.4131
RateTracePlots(fit3)
NonRateTracePlots(fit3)

If this is all the data that you have, I would suggest trying to add simple network effects, increase the Markov Chain, but to not have high hopes to ever get good results. Three teams with 5 people is a very small dataset.

Running a REM

Background

Context

We analyzed information exchange in several emergency care teams. These teams were operating in the local simulation center and practicing a specific procedure (ABCDE). All training sessions were recorded and manually coded. A training session had most often 4 team members (main nurse, supporting nurse, doctor, and specialist). The specialist was only called in to transfer the simulated patient from the emergency care room to the care-giving unit. More information about the context is available in The Main Nurse as a Linchpin in Emergency Care Teams.

Variables

The variables we collected through coding the videos were information retrieval and information allocation (dependent variables), and three forms of higher order processing of information (summarizing, elaboration, and decision-making). Our coding schema also included exchanges between a human and a machine, when for example, a nurse is working on a machine. Additionally we collected the following variables using a survey: Awareness of team member’s expertise (knowing; independent variable), the importance team member’s attach to each other’s expertise (valuing, independent variable), how adaptive individuals are (adaptive expertise; independent variable), their emotional attachment to their group (social identity; independent variable), and background variables (gender, age, nationality, job role, tenure, number of training session, department; control variable).

What we did

We analyzed the data using relational event modeling. For the chapter mentioned above we created some specific scripts to deal with self-loops, valued independent data etc. Below I created a simpler script to demonstrate how to run a REM>

REM Steps

For this workshop we will be focusing

In general, the steps are: 1. Import the data 2. Specify independent, dependent variables 3. Select the effects and specify the model 4. Test goodness of fit

Running a REM

library(relevent)
## Loading required package: trust
## Loading required package: sna
## Loading required package: statnet.common
## 
## Attaching package: 'statnet.common'
## The following object is masked from 'package:base':
## 
##     order
## Loading required package: network
## network: Classes for Relational Data
## Version 1.13.0 created on 2015-08-31.
## copyright (c) 2005, Carter T. Butts, University of California-Irvine
##                     Mark S. Handcock, University of California -- Los Angeles
##                     David R. Hunter, Penn State University
##                     Martina Morris, University of Washington
##                     Skye Bender-deMoll, University of Washington
##  For citation information, type citation("network").
##  Type help("network-package") to get started.
## sna: Tools for Social Network Analysis
## Version 2.4 created on 2016-07-23.
## copyright (c) 2005, Carter T. Butts, University of California-Irvine
##  For citation information, type citation("sna").
##  Type help(package="sna") to get started.
## Loading required package: coda
## relevent: Relational Event Models
## Version 1.0-4 created on March 9, 2015.
## copyright (c) 2007, Carter T. Butts, University of California-
## Irvine
##  For citation information, type citation("relevent").
##  Type help(package="relevent") to get started.
library(informR)
## Loading required package: abind
## informR: Sequence Statistics for Relational Event Models
## Version 1.0-5 created on 2015-03-09.
## copyright (c) 2010, Christopher Steven Marcum, University of California-
## Irvine
##  For citation information, type citation("informR").
##  Type help(package="informR") to get started.
source("rem_data_loading.R", echo=F)

rem can be applied to egocentric relational event data but requires that the user supplies the necessary statistics. On the other hand, rem.dyad is less flexible, but has more built-in functionalities (and hence requires less coding). The function takes the form of rem.dyad(edgelist, n, effects = NULL, ordinal = TRUE. To run it, you need to define an edgelist, the number of senders and receivers, an optional list of effects, and indicate if the timing is ordinal (TRUE) or if the exact timing of events should be used (ordinal=FALSE). The edgelist is a 3-column matrix which contains information about the timing, sender, and receiver. The data needs to be sorted by time.

nbr_send_rec = c(unique(remj[remj$Observation == 10,2]), unique(remj[remj$Observation == 10,(3)]))
nbr_send_rec
## [1] 10  8  1  5  2  6  3  4
fit1 <- rem.dyad(remj[remj$Observation == 10,(1:3)], n = length(nbr_send_rec), ordinal=FALSE) 
summary(fit1)
## Relational Event Model (Temporal Likelihood)
## 
## Null model object.
## 
## Null deviance: 3124.23 on 255 degrees of freedom
## Residual deviance: 3124.23 on 255 degrees of freedom
##  Chi-square: 0 on 0 degrees of freedom, asymptotic p-value 1 
## AIC: 3126.23 AICC: 3124.245 BIC: 3129.771

The model fit1 only includes the fixed effect. Not interesting at all. We are going to add a bunch of effects.

fit2 <- rem.dyad(remj[remj$Observation == 10,(1:3)], n = length(nbr_send_rec), ordinal=FALSE, effects= c("FESnd","FERec", "PSAB-BA", "PSAB-XA")) 
## Computing preliminary statistics
## Fitting model
## Obtaining goodness-of-fit statistics
summary(fit2)
## Relational Event Model (Temporal Likelihood)
## 
##         Estimate
## FESnd.2  -1.2756
## FESnd.3 -13.2561
## FESnd.4 -13.2561
## FESnd.5 -13.2807
## FESnd.6 -13.2772
## FESnd.7 -13.2687
## FESnd.8 -13.2810
## FERec.2  -2.3792
## FERec.3  -3.0380
## FERec.4  -2.6255
## FERec.5  -4.4902
## FERec.6  -3.4224
## FERec.7  -3.7970
## FERec.8 -13.2607
## PSAB-BA   0.0000
## PSAB-XA   0.0000
## Null deviance: 3124.23 on 255 degrees of freedom
## Residual deviance: 3065.266 on 240 degrees of freedom
##  Chi-square: 58.96386 on 15 degrees of freedom, asymptotic p-value 3.797506e-07 
## AIC: 3097.266 AICC: 3099.552 BIC: 3153.926

In my analysis I also wanted to take the type of event into account. Hence, I wanted to make a difference between information allocation, information retrieval, summarizing, elaboration, and decision making. I also had individual variables I wanted to include. For these reasons I used rem.

The function rem requires a different set of arguments rem(eventlist, statslist, supplist = NULL, timing = c("ordinal", "interval"). The first, eventlist is a 2-column matrix (or list) with the time of an event and the event type. This is the file evlj. If you inspect its type (class(evlj)) and its structure (str(evlj)), you’ll see that it is a list with 31 items. Each item in the list is a matrix with 2 columns. The first column in the matrix is a series of numbers, the event types, the second column contains the timing.

evlj$eventlist$`1`[1:10,]
##       [,1]     [,2]
##  [1,]    0  0.00001
##  [2,]   11 19.95292
##  [3,]   12 22.45043
##  [4,]   11 23.99704
##  [5,]    5 29.57855
##  [6,]    9 32.31916
##  [7,]    1 34.75897
##  [8,]    6 34.95038
##  [9,]    2 36.16269
## [10,]    1 37.26560
evlj$event.key
##       id  event.type
##  [1,] "a" "8.8"     
##  [2,] "b" "1.5"     
##  [3,] "c" "5.1"     
##  [4,] "d" "2.1"     
##  [5,] "e" "1.2"     
##  [6,] "f" "1.10"    
##  [7,] "g" "2.6"     
##  [8,] "h" "1.6"     
##  [9,] "i" "6.1"     
## [10,] "j" "5.10"    
## [11,] "k" "6.2"     
## [12,] "l" "2.5"     
## [13,] "m" "5.2"     
## [14,] "n" "1.3"     
## [15,] "o" "2.10"    
## [16,] "p" "3.10"    
## [17,] "q" "3.6"     
## [18,] "r" "2.3"     
## [19,] "s" "6.3"     
## [20,] "t" "3.2"     
## [21,] "u" "3.5"     
## [22,] "v" "5.3"     
## [23,] "w" "3.1"     
## [24,] "x" "4.10"    
## [25,] "y" "3.4"     
## [26,] "z" "4.3"     
## [27,] "A" "4.6"     
## [28,] "B" "6.4"     
## [29,] "C" "4.5"     
## [30,] "D" "5.4"     
## [31,] "E" "9.9"     
## [32,] "F" "7.7"     
## [33,] "G" "2.4"     
## [34,] "H" "4.2"     
## [35,] "I" "4.1"     
## [36,] "J" "1.4"

This list was created by calling gen.evl(eventlist, null.events=NULL). Eventlist is a 2 or 3 column matrix. Running gen.evl gives you an eventlist (a sequence of numbers indicating the events that occurred) and an event.key.

The function rem also requires that you provide a statslist. This is a file containing some statistics about your data. The code below creates such as statslist for the fixed sender effects. Think of these as your intercepts only for sending information.

#Intercepts et cetera
evlj.ints <- gen.intercepts(evlj, contr = F)
nj<-7
njn<-c(1,2,3,4,5,6,10)
sformlistj <- c(
  lapply(2:(nj-1), function(z){
    str <- paste("^",njn[z], ".", sep="")
    grep(str, evlj$event.key[ ,2])
    # put in the square brackets, all events which are between real people.
    # the 2 stands for the event.key not event.id
  }),
  lapply(2:nj, function(z){
    str <- paste(".", njn[z],"$", sep = "")
   grep(str, evlj$event.key[, 2])
 })
)

b1j<-list()
b1.lj<-list()
FEsj<-list()

for(h in 1:length(evlj$eventlist)){
  b1j[[h]] <- lapply(sformlistj, function(x) evlj.ints[[h]][[1]][, , evlj$event.key[x,2]])
  b1.lj[[h]] <- lapply(b1j[[h]], apply, MARGIN = 1:2, sum)
  FEsj[[h]] <- array(unlist(b1.lj[[h]]), dim = c(nrow(b1.lj[[h]][[1]]), ncol(b1.lj[[h]][[1]]),
                                                 length(b1.lj[[h]])))
  dimnames(FEsj[[h]]) <- list(dimnames(b1j[[h]][[1]])[[1]], dimnames(b1j[[h]][[1]])[[2]],
                              c(paste("FESnd", njn[-c(1,7)], sep="."),paste("FERec", njn[-1], sep=".")))
}

#Simple Fixed Effects for Sender and Receiver
FEsj<-sfl2statslist(FEsj)

Now we have the statslist. The supplist has been created when loading the data. The goal of the supplist is to indicate which events could have been observed and which not. For example, in my setting the doctor entered the emergency care room at a later stage. This means that it was impossible to observe any interaction with the doctor before that. My event list contains an event ‘doctor enters the room’ (aka handover between nurse and doctor). We used this event to indicate when interaction with the doctor was possible.

fit1.rem is running a simple fixed effect model. This is the null model only including intercepts.

#Model 1 Fixed Effects for Sender and Receiver (pooled likelihood)
fit1.rem<-rem(evlj$eventlist,FEsj,timing="interval",estimator="MLE",supplist=supplistj)
summary(fit1.rem)
## Egocentric Relational Event Model (Interval Likelihood)
## 
##                MLE   Std.Err Z value  Pr(>|z|)    
## FESnd.2  -2.737658  0.015226 -179.80 < 2.2e-16 ***
## FESnd.3  -2.591566  0.014188 -182.66 < 2.2e-16 ***
## FESnd.4  -4.284953  0.032379 -132.34 < 2.2e-16 ***
## FESnd.5  -3.481403  0.022142 -157.23 < 2.2e-16 ***
## FESnd.6  -3.902952  0.028064 -139.07 < 2.2e-16 ***
## FERec.2  -3.016525  0.017835 -169.13 < 2.2e-16 ***
## FERec.3  -2.930825  0.017165 -170.75 < 2.2e-16 ***
## FERec.4  -4.531038  0.037141 -121.99 < 2.2e-16 ***
## FERec.5  -3.185861  0.019290 -165.15 < 2.2e-16 ***
## FERec.6  -3.938522  0.028070 -140.31 < 2.2e-16 ***
## FERec.10 -2.770828  0.015499 -178.78 < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Null deviance: 106703.6 on 9557 degrees of freedom
## Residual deviance: 116213.4 on 9546 degrees of freedom
##  Chi-square: -9509.75 on 11 degrees of freedom, asymptotic p-value 1 
## AIC: 116235.4 AICC: 116235.4 BIC: 116314.2

Now we will be including a participation shift event. 10 is a special ‘ego actor’: The team. When team members engaged in exchanges such as summarizing information, elaboration of information, and decision-making it was difficult to decide who the receiver of this information exchange is. Therefore, we coded them all to be directed at the team (actor 10). For this reason, actor 10 cannot send out information exchanges.

#Ignore null events and events involving 10, who cannot by construct reply.
nevs<-grep(paste(c(paste("(",evlj$null.events,")",sep=""),"(10)"),collapse="|"),evlj$event.key[,2])
evk.ex<-cbind(evlj$event.key[-nevs,1],do.call("rbind",strsplit(evlj$event.key[-nevs,2],"\\.")))

#Match AB->BA turn taking PShifts
tr1<-cbind(evk.ex[,1],evk.ex[sapply(paste(evk.ex[,2],evk.ex[,3],sep="."),function(x) which(x==paste(evk.ex[,3],evk.ex[,2],sep="."))),1])
tr2<-paste(tr1[,1],tr1[,2],sep="")

tr.sfl<-glb.sformlist(evlj,sforms=list(tr2),new.names="PS-ABBA",interval=TRUE,cond=FALSE)

FEsTr<-slbind(tr.sfl,FEsj)
#FEsTr<-slbind(tr.sfl,KWSnd1) 
fit2.rem <- rem(evlj$eventlist, FEsTr, supplist=supplistj,estimator = "MLE",timing="interval")

summary(fit2.rem)
## Egocentric Relational Event Model (Interval Likelihood)
## 
##                MLE   Std.Err Z value  Pr(>|z|)    
## FESnd.2  -3.050740  0.015931 -191.49 < 2.2e-16 ***
## FESnd.3  -2.848682  0.014727 -193.44 < 2.2e-16 ***
## FESnd.4  -4.288418  0.032372 -132.47 < 2.2e-16 ***
## FESnd.5  -3.666170  0.022332 -164.17 < 2.2e-16 ***
## FESnd.6  -4.044053  0.028155 -143.64 < 2.2e-16 ***
## FERec.2  -3.302272  0.018360 -179.86 < 2.2e-16 ***
## FERec.3  -3.114472  0.017412 -178.87 < 2.2e-16 ***
## FERec.4  -4.515115  0.037135 -121.59 < 2.2e-16 ***
## FERec.5  -3.322871  0.019414 -171.16 < 2.2e-16 ***
## FERec.6  -4.047708  0.028122 -143.93 < 2.2e-16 ***
## FERec.10 -2.736799  0.015484 -176.75 < 2.2e-16 ***
## PS-ABBA   1.934131  0.015255  126.79 < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Null deviance: 106703.6 on 9557 degrees of freedom
## Residual deviance: 110630.8 on 9545 degrees of freedom
##  Chi-square: -3927.161 on 12 degrees of freedom, asymptotic p-value 1 
## AIC: 110654.8 AICC: 110654.8 BIC: 110740.8

A quick note about the interpretation of the results. The estimates are hazard rates. You could take the exponential of them (exp(-2.85)) to get log values. In that way, you can say thinks like “the likelihood that the doctor (actor 3) will send information is 95 per cent (exp(-2.85) less likely than that the main nurse will send information”. Why the main nurse? You have to specify a base level. We picked the main nurse as this actor initiates the interaction. However, we could have also picked someone else. The danger with using log likelihoods when discussing your results is that others might not view it as a longitudinal study. An alternative is to talk about hazard rates. You would then say something like “The rate at which the doctor sends information is 95 % less fast than the rate of sending information from the main nurse.”