本校は、factoextraの作者である Alboukadel Kassambara 氏による「Correspondence analysis basics - R software and data mining」(http://www.sthda.com/english/wiki/correspondence-analysis-basics-r-software-and-data-mining )の日本語訳です。まずはデータ(の変数名)と見出しを日本語化し、順次解説の翻訳もおこなっていきます。スクリプトを順次実行していけば、英語の部分の意味もわかると思います。日本語化のペースは、早くないです。あしからず。

日本語化の方針は、以下の通りです。

対応分析(CA)は、主成分分析(PCA)を、質的変数で構成される度数表(例:分割表)の分析適合するように拡張されたものである。

Correspondence analysis (CA) is an extension of Principal Component Analysis (PCA) suited to analyze frequencies formed by qualitative variables (i.e, contingency table).

このRのチュートリアルは、Rソフトウェアをもちいて、対応分析(CA)の考え方と数学的手順を記述する。

This R tutorial describes the idea and the mathematical procedures of Correspondence Analysis (CA) using R software.

CAの数学的手順は、複雑なもので行列台数を必要とする。

The mathematical procedures of CA are complex and require matrix algebra.

このチュートリアルでは、すべての公式を非常にシンプルな形で記述し、初心者でも理解できるようにした。

In this tutorial, I put a lot of effort into writing all the formula in a very simple format so that every beginner can understand the methods.

必要なパッケージ

Required package

FactoMineR(CAの計算のため) と factoextra(CAを可視化)のパッケージが用いられる。

FactoMineR(for computing CA) and factoextra (for CA visualization) packages are used.

これらのぱっけーじいは、以下のようにインストールされる。 These packages can be installed as follow :

install.packages("FactoMineR")
# install.packages("devtools")
devtools::install_github("kassambara/factoextra")

FactoMineR と factoextraをLoadする

Load FactoMineR and factoextra

library("FactoMineR")
library("factoextra")
## Warning: package 'ggplot2' was built under R version 3.3.2

データフォーマット:分割表

Data format: Contingency tables

データセットとして、housetasks[factoextra に含まれている]を使用する。

We’ll use the data set housetasks[in factoextra]

data(housetasks)
housetasks
##            Wife Alternating Husband Jointly
## Laundry     156          14       2       4
## Main_meal   124          20       5       4
## Dinner       77          11       7      13
## Breakfeast   82          36      15       7
## Tidying      53          11       1      57
## Dishes       32          24       4      53
## Shopping     33          23       9      55
## Official     12          46      23      15
## Driving      10          51      75       3
## Finances     13          13      21      66
## Insurance     8           1      53      77
## Repairs       0           3     160       2
## Holidays      0           1       6     153
#head(housetasks)

変数を日本語化します。Main_meal:ディナーとしたので、Dinnerを夕食に。Dishesは料理にしています。あと、officialを公的。調査表をみないとなんともはっきりしません。著者に質問中です。

colnames(housetasks) <- c("妻が","交代で","夫が","一緒に")
rownames(housetasks) <- c("洗濯","ディナー","夕食","朝食","整頓",
                          "料理","買物","公的","運転","財務",
                          "保険","修繕","休日")
#head(housetasks)

An image of the data is shown below:

 knitr::kable(housetasks)
妻が 交代で 夫が 一緒に
洗濯 156 14 2 4
ディナー 124 20 5 4
夕食 77 11 7 13
朝食 82 36 15 7
整頓 53 11 1 57
料理 32 24 4 53
買物 33 23 9 55
公的 12 46 23 15
運転 10 51 75 3
財務 13 13 21 66
保険 8 1 53 77
修繕 0 3 160 2
休日 0 1 6 153

[image]

これは、13の家事(housetasks)とカップルの分担についてのの分割表である。

The data is a contingency table containing 13 housetasks and their repartition in the couple :

この分割表の規模は大きくないので、以下のことはすぐに見てとれる。

As the above contingency table is not very large, with a quick visual examination it can be seen that:

グラフィカル行列を用いて分割表を可視化する

Visualize a contingency table using graphical matrix

To easily interpret the contingency table, a graphical matrix can be drawn using the function balloonplot() [in gplots package]. In this graph, each cell contains a dot whose size reflects the relative magnitude of the value it contains.

library("gplots")
## 
## Attaching package: 'gplots'
## The following object is masked from 'package:stats':
## 
##     lowess
# 1. convert the data as a table
dt <- as.table(as.matrix(housetasks))
# 2. Graph
balloonplot(t(dt), main ="家事", xlab ="", ylab="",
            label = FALSE, show.margins = FALSE)

For a very large contingency table, the visual interpretation would be very hard. Other methods are required such as correspondence analysis.

 I will describe step by step many tools and statistical approaches to visualize, analyse and interpret a contingency table.

行和と列和

Row sums and column sums

Row sums (row.sum) and column sums (col.sum) are called row margins and column margins, respectively. They can be calculated as follow:

# Row margins
row.sum <- apply(housetasks, 1, sum)
head(row.sum)
##     洗濯 ディナー     夕食     朝食     整頓     料理 
##      176      153      108      140      122      113
# Column margins
col.sum <- apply(housetasks, 2, sum)
head(col.sum)
##   妻が 交代で   夫が 一緒に 
##    600    254    381    509
# grand total
n <- sum(housetasks)

The grand total is the total sum of all values in the contingency table.

The contingency table with row and column margins are shown below:

行変数

Row variables

To compare rows, we can analyse their profiles in order to identify similar row variables.

行プロファイル

Row profiles

The profile of a given row is calculated by taking each row point and dividing by its margin (i.e, the sum of all row points). The formula is:

\[ row.profile = \frac{row}{row.sum} \]

For example the profile of the row point Laundry/wife is P = 156/176 = 88.6%.

The R code below can be used to compute row profiles:

row.profile <- housetasks/row.sum
row.profile
##                妻が      交代で        夫が     一緒に
## 洗濯     0.88636364 0.079545455 0.011363636 0.02272727
## ディナー 0.81045752 0.130718954 0.032679739 0.02614379
## 夕食     0.71296296 0.101851852 0.064814815 0.12037037
## 朝食     0.58571429 0.257142857 0.107142857 0.05000000
## 整頓     0.43442623 0.090163934 0.008196721 0.46721311
## 料理     0.28318584 0.212389381 0.035398230 0.46902655
## 買物     0.27500000 0.191666667 0.075000000 0.45833333
## 公的     0.12500000 0.479166667 0.239583333 0.15625000
## 運転     0.07194245 0.366906475 0.539568345 0.02158273
## 財務     0.11504425 0.115044248 0.185840708 0.58407080
## 保険     0.05755396 0.007194245 0.381294964 0.55395683
## 修繕     0.00000000 0.018181818 0.969696970 0.01212121
## 休日     0.00000000 0.006250000 0.037500000 0.95625000
# head(row.profile)

In the table above, the row TOTAL (in light blue) is called the average row profile (or marginal profile of columns or column margin)

The average row profile is computed as follow:

\[ average.rp = \frac{column.sum}{grand.total} \]

For example, the average row profile is : (600/1744, 254/1744, 381/1744, 509/1744). It can be computed in R as follow:

# Column sums
col.sum <- apply(housetasks, 2, sum)
# average row profile = Column sums / grand total
average.rp <- col.sum/n 
average.rp
##      妻が    交代で      夫が    一緒に 
## 0.3440367 0.1456422 0.2184633 0.2918578

行プロファイル間の距離(もしくは類似性)

Distance (or similarity) between row profiles

If we want to compare 2 rows (row1 and row2), we need to compute the squared distance between their profiles as follow:

\[ d^2(row_1, row_2) = \sum{\frac{(row.profile_1 - row.profile_2)^2}{average.profile}} \]

This distance is called Chi-square distance.

For example the distance between the rows Laundry and Main_meal are:

\[ d^2(Laundry, Main\_meal) = \frac{(0.886-0.810)^2}{0.344} + \frac{(0.0795-0.131)^2}{0.146} + ... = 0.036 \]

The distance between Laundry and Main_meal can be calculated as follow in R:

# Laundry and Main_meal profiles
洗濯.p <- row.profile["洗濯",]
ディナー.p <- row.profile["ディナー",]
# Distance between Laundry and Main_meal
d2 <- sum(((洗濯.p - ディナー.p)^2) / average.rp)
d2
## [1] 0.03684787

The distance between Laundry and Driving is:

# Driving profile
運転.p <- row.profile["運転",]
# Distance between Laundry and Driving
d2 <- sum(((洗濯.p - 運転.p)^2) / average.rp)
d2
## [1] 3.772028

 Note that, the rows Laundry and Main_meal are very close (d2 ~ 0.036, similar profiles) compared to the rows Laundry and Driving (d2 ~ 3.77)

You can also compute the squared distance between each row profile and the average row profile in order to view rows that are the most similar or different to the average row.

平均行プロファイルに対する各行プロファイルの距離の二乗

Squared distance between each row profile and the average row profile

\[ d^2(row_i, average.profile) = \sum{\frac{(row.profile_i - average.profile)^2}{average.profile}} \]

The R code below computes the distance from the average profile for all the row variables:

d2.row <- apply(row.profile, 1, 
        function(row.p, av.p){sum(((row.p - av.p)^2)/av.p)}, 
        average.rp)
as.matrix(round(d2.row,3))
##           [,1]
## 洗濯     1.329
## ディナー 1.034
## 夕食     0.618
## 朝食     0.512
## 整頓     0.353
## 料理     0.302
## 買物     0.218
## 公的     0.968
## 運転     1.274
## 財務     0.456
## 保険     0.727
## 修繕     3.307
## 休日     2.140

The rows Repairs, Holidays, Laundry and Driving have the most different profiles from the average profile.

距離行列

Distance matrix

In this section the squared distance is computed between each row profile and the other rows in the contingency table.

The result is a distance matrix (a kind of correlation or dissimilarity matrix).

The custom R function below is used to compute the distance matrix:

## data: a data frame or matrix; 
## average.profile: average profile
dist.matrix <- function(data, average.profile){
   mat <- as.matrix(t(data))
    n <- ncol(mat)
    dist.mat<- matrix(NA, n, n)
    diag(dist.mat) <- 0
    for (i in 1:(n - 1)) {
        for (j in (i + 1):n) {
            d2 <- sum(((mat[, i] - mat[, j])^2) / average.profile)
            dist.mat[i, j] <- dist.mat[j, i] <- d2
        }
    }
  colnames(dist.mat) <- rownames(dist.mat) <- colnames(mat)
  dist.mat
}

Compute and visualize the distance between row profiles. The package corrplot is required for the visualization. It can be installed as follow: install.packages(“corrplot”).

距離行列

Distance matrix

dist.mat <- dist.matrix(row.profile, average.rp)
dist.mat <-round(dist.mat, 2)
# Visualize the matrix
library("corrplot")
corrplot(dist.mat, type="upper",  is.corr = FALSE)

The size of the circle is proportional to the magnitude of the distance between row profiles.

When the data contains many categories, correspondence analysis is very useful to visualize the similarity between items.

行質量と慣性

Row mass and inertia The Row mass (or row weight) is the total frequency of a given row. It’s calculated as follow:

\[ row.mass = \frac{row.sum}{grand.total} \]

row.sum <- apply(housetasks, 1, sum)
grand.total <- sum(housetasks)
row.mass <- row.sum/grand.total
head(row.mass)
##       洗濯   ディナー       夕食       朝食       整頓       料理 
## 0.10091743 0.08772936 0.06192661 0.08027523 0.06995413 0.06479358

The Row inertia is calculated as the row mass multiplied by the squared distance between the row and the average row profile:

\[ row.inertia = row.mass * d^2(row) \]

 * The inertia of a row (or a column) is the amount of information it contains. * The total inertia is the total information contained in the data table. It’s computed as the sum of rows inertia (or equivalently, as the sum of columns inertia)

# Row inertia
row.inertia <- row.mass * d2.row
head(row.inertia)
##       洗濯   ディナー       夕食       朝食       整頓       料理 
## 0.13415976 0.09069235 0.03824633 0.04112368 0.02466697 0.01958732
# Total inertia
sum(row.inertia)
## [1] 1.11494

The total inertia corresponds to the amount of the information the data contains.

行サマリー

Row summary The result for rows can be summarized as follow:

row <- cbind.data.frame(d2 = d2.row, mass = row.mass, inertia = row.inertia)
round(row,3)
##             d2  mass inertia
## 洗濯     1.329 0.101   0.134
## ディナー 1.034 0.088   0.091
## 夕食     0.618 0.062   0.038
## 朝食     0.512 0.080   0.041
## 整頓     0.353 0.070   0.025
## 料理     0.302 0.065   0.020
## 買物     0.218 0.069   0.015
## 公的     0.968 0.055   0.053
## 運転     1.274 0.080   0.102
## 財務     0.456 0.065   0.030
## 保険     0.727 0.080   0.058
## 修繕     3.307 0.095   0.313
## 休日     2.140 0.092   0.196

列変数

Column variables

列プロファイル

Column profiles These are calculated in the same way as the row profiles table.

The profile of a given column is computed as follow:

\[ col.profile = \frac{col}{col.sum} \]

The R code below can be used to compute column profile:

col.profile <- t(housetasks)/col.sum
col.profile <- as.data.frame(t(col.profile))
# head(col.profile)

In the table above, the column TOTAL is called the average column profile (or marginale profile of rows)

The average column profile is calculated as follow:

\[ average.cp = row.sum/grand.total \]

For example, the average column profile is : (176/1744, 153/1744, 108/1744, 140/1744, …). It can be computed in R as follow:

# Row sums
row.sum <- apply(housetasks, 1, sum)
# average column profile= row sums/grand total
average.cp <- row.sum/n 
head(average.cp)
##       洗濯   ディナー       夕食       朝食       整頓       料理 
## 0.10091743 0.08772936 0.06192661 0.08027523 0.06995413 0.06479358

列プロファイル間間の距離(類似性)

Distance (similarity) between column profiles

If we want to compare columns, we need to compute the squared distance between their profiles as follow:

\[ d^2(col_1, col_2) = \sum{\frac{(col.profile_1 - col.profile_2)^2}{average.profile}} \]

For example the distance between the columns Wife and Husband are:

\[ d^2(Wife, Husband) = \frac{(0.26-0.005)^2}{0.10} + \frac{(0.21-0.013)^2}{0.09} + ... + ... = 4.05 \]

The distance between Wife and Husband can be calculated as follow in R:

# Wife and Husband profiles
妻が.p <- col.profile[, "妻が"]
夫が.p <- col.profile[, "夫が"]
# Distance between Wife and Husband
d2 <- sum(((妻が.p - 夫が.p)^2) / average.cp)
d2
## [1] 4.050311

You can also compute the squared distance between each column profile and the average column profile

平均列プロファイルに対する各列プロファイルの距離の二乗

Squared distance between each column profile and the average column profile

\[ d^2(col_i, average.profile) = \sum{\frac{(col.profile_i - average.profile)^2}{average.profile}} \]

The R code below computes the distance from the average profile for all the column variables

d2.col <- apply(col.profile, 2, 
        function(col.p, av.p){sum(((col.p - av.p)^2)/av.p)}, 
        average.cp)
round(d2.col,3)
##   妻が 交代で   夫が 一緒に 
##  0.875  0.809  1.746  1.078

距離行列

Distance matrix

# Distance matrix
dist.mat <- dist.matrix(t(col.profile), average.cp)
dist.mat <-round(dist.mat, 2)
dist.mat
##        妻が 交代で 夫が 一緒に
## 妻が   0.00   1.71 4.05   2.93
## 交代で 1.71   0.00 2.67   2.58
## 夫が   4.05   2.67 0.00   3.70
## 一緒に 2.93   2.58 3.70   0.00
# Visualize the matrix
library("corrplot")
corrplot(dist.mat, type="upper", order="hclust", is.corr = FALSE)

列質量と慣性

column mass and inertia

The column mass(or column weight) is the total frequency of each column. It’s calculated as follow:

\[ col.mass = \frac{col.sum}{grand.total} \]

col.sum <- apply(housetasks, 2, sum)
grand.total <- sum(housetasks)
col.mass <- col.sum/grand.total
head(col.mass)
##      妻が    交代で      夫が    一緒に 
## 0.3440367 0.1456422 0.2184633 0.2918578
   Wife Alternating     Husband     Jointly 

0.3440367 0.1456422 0.2184633 0.2918578 The column inertia is calculated as the column mass multiplied by the squared distance between the column and the average column profile:

\[ col.inertia = col.mass * d^2(col) \]

col.inertia <- col.mass * d2.col
head(col.inertia)
##      妻が    交代で      夫が    一緒に 
## 0.3010185 0.1178242 0.3813729 0.3147248
# total inertia
sum(col.inertia)
## [1] 1.11494

Recall that the total inertia corresponds to the amount of the information the data contains. Note that, the total inertia obtained using column profile is the same as the one obtained when analyzing row profile. That’s normal, because we are analyzing the same data with just a different angle of view.

列サマリー

Column summary

The result for rows can be summarized as follow:

col <- cbind.data.frame(d2 = d2.col, mass = col.mass, 
                        inertia = col.inertia)
round(col,3)
##           d2  mass inertia
## 妻が   0.875 0.344   0.301
## 交代で 0.809 0.146   0.118
## 夫が   1.746 0.218   0.381
## 一緒に 1.078 0.292   0.315

行変数と列変数間間の連関

Association between row and column variables

When the contingency table is not very large (as above), it’s easy to visually inspect and interpret row and column profiles:

Another statistical method that can be applied to contingency table is the Chi-square test of independence.

カイ二乗検定

Chi-square test

Chi-square test issued to examine whether rows and columns of a contingency table are statistically significantly associated.

  • Null hypothesis (H0): the row and the column variables of the contingency table are independent.
  • Alternative hypothesis (H1): row and column variables are dependent For each cell of the table, we have to calculate the expected value under null hypothesis.

For a given cell, the expected value is calculated as follow:

\[ e = \frac{row.sum * col.sum}{grand.total} \]

The Chi-square statistic is calculated as follow:

\[ \chi^2 = \sum{\frac{(o - e)^2}{e}} \]

  • o is the observed value
  • e is the expected value

This calculated Chi-square statistic is compared to the critical value (obtained from statistical tables) with df=(r−1)(c−1) degrees of freedom and p = 0.05.

  • r is the number of rows in the contingency table
  • c is the number of column in the contingency table If the calculated Chi-square statistic is greater than the critical value, then we must conclude that the row and the column variables are not independent of each other. This implies that they are significantly associated.

Note that, Chi-square test should only be applied when the expected frequency of any cell is at least 5.

Chi-square statistic can be easily computed using the function chisq.test() as follow:

chisq <- chisq.test(housetasks)
chisq
## 
##  Pearson's Chi-squared test
## 
## data:  housetasks
## X-squared = 1944.5, df = 36, p-value < 2.2e-16

In our example, the row and the column variables are statistically significantly associated(p-value = 0)

Note that, while Chi-square test can help to establish dependence between rows and the columns, the nature of the dependency is unknown.

The observed and the expected counts can be extracted from the result of the test as follow:

# Observed counts
chisq$observed
##          妻が 交代で 夫が 一緒に
## 洗濯      156     14    2      4
## ディナー  124     20    5      4
## 夕食       77     11    7     13
## 朝食       82     36   15      7
## 整頓       53     11    1     57
## 料理       32     24    4     53
## 買物       33     23    9     55
## 公的       12     46   23     15
## 運転       10     51   75      3
## 財務       13     13   21     66
## 保険        8      1   53     77
## 修繕        0      3  160      2
## 休日        0      1    6    153
# Expected counts
round(chisq$expected,2)
##           妻が 交代で  夫が 一緒に
## 洗濯     60.55  25.63 38.45  51.37
## ディナー 52.64  22.28 33.42  44.65
## 夕食     37.16  15.73 23.59  31.52
## 朝食     48.17  20.39 30.58  40.86
## 整頓     41.97  17.77 26.65  35.61
## 料理     38.88  16.46 24.69  32.98
## 買物     41.28  17.48 26.22  35.02
## 公的     33.03  13.98 20.97  28.02
## 運転     47.82  20.24 30.37  40.57
## 財務     38.88  16.46 24.69  32.98
## 保険     47.82  20.24 30.37  40.57
## 修繕     56.77  24.03 36.05  48.16
## 休日     55.05  23.30 34.95  46.70

As mentioned above the Chi-square statistic is 1944.456196.

Which are the most contributing cells to the definition of the total Chi-square statistic?

If you want to know the most contributing cells to the total Chi-square score, you just have to calculate the Chi-square statistic for each cell:

\[ r = \frac{o - e}{\sqrt{e}} \]

The above formula returns the so-called Pearson residuals (r) for each cell (or standardized residuals)

Cells with the highest absolute standardized residuals contribute the most to the total Chi-square score.

Pearson residuals can be easily extracted from the output of the function chisq.test():

round(chisq$residuals, 3)
##            妻が 交代で   夫が 一緒に
## 洗濯     12.266 -2.298 -5.878 -6.609
## ディナー  9.836 -0.484 -4.917 -6.084
## 夕食      6.537 -1.192 -3.416 -3.299
## 朝食      4.875  3.457 -2.818 -5.297
## 整頓      1.702 -1.606 -4.969  3.585
## 料理     -1.103  1.859 -4.163  3.486
## 買物     -1.289  1.321 -3.362  3.376
## 公的     -3.659  8.563  0.443 -2.459
## 運転     -5.469  6.836  8.100 -5.898
## 財務     -4.150 -0.852 -0.742  5.750
## 保険     -5.758 -4.277  4.107  5.720
## 修繕     -7.534 -4.290 20.646 -6.651
## 休日     -7.419 -4.620 -4.897 15.556

Let’s visualize Pearson residuals using the package corrplot:

library(corrplot)
corrplot(chisq$residuals, is.cor = FALSE)

For a given cell, the size of the circle is proportional to the amount of the cell contribution.

The sign of the standardized residuals is also very important to interpret the association between rows and columns as explained in the block below.

  1. Positive residuals are in blue. Positive values in cells specify an attraction (positive association) between the corresponding row and column variables.
  • In the image above, it’s evident that there are an association between the column Wife and the rows Laundry, Main_meal.
  • There is a strong positive association between the column Husband and the row Repair
  1. Negative residuals are in red. This implies a repulsion (negative association) between the corresponding row and column variables. For example the column Wife are negatively associated (~ “not associated”) with the row Repairs. There is a repulsion between the column Husband and, the rows Laundry and Main_meal

Note that, correspondence analysis is just the singular value decomposition of the standardized residuals. This will be explained in the next section.

The contribution (in %) of a given cell to the total Chi-square score is calculated as follow:

\[ contrib = \frac{r^2}{\chi^2} \]

  • r is the residual of the cell
# Contibution in percentage (%)
contrib <- 100*chisq$residuals^2/chisq$statistic
round(contrib, 3)
##           妻が 交代で   夫が 一緒に
## 洗濯     7.738  0.272  1.777  2.246
## ディナー 4.976  0.012  1.243  1.903
## 夕食     2.197  0.073  0.600  0.560
## 朝食     1.222  0.615  0.408  1.443
## 整頓     0.149  0.133  1.270  0.661
## 料理     0.063  0.178  0.891  0.625
## 買物     0.085  0.090  0.581  0.586
## 公的     0.688  3.771  0.010  0.311
## 運転     1.538  2.403  3.374  1.789
## 財務     0.886  0.037  0.028  1.700
## 保険     1.705  0.941  0.868  1.683
## 修繕     2.919  0.947 21.921  2.275
## 休日     2.831  1.098  1.233 12.445
# Visualize the contribution
corrplot(contrib, is.cor = FALSE)

The relative contribution of each cell to the total Chi-square score give some indication of the nature of the dependency between rows and columns of the contingency table.

It can be seen that:

  1. The column “Wife” is strongly associated with Laundry, Main_meal, Dinner
  2. The column “Husband” is strongly associated with the row Repairs
  3. The column jointly is frequently associated with the row Holidays  From the image above, it can be seen that the most contributing cells to the Chi-square are Wife/Laundry (7.74%), Wife/Main_meal (4.98%), Husband/Repairs (21.9%), Jointly/Holidays (12.44%).

These cells contribute about 47.06% to the total Chi-square score and thus account for most of the difference between expected and observed values.

This confirms the earlier visual interpretation of the data. As stated earlier, visual interpretation may be complex when the contingency table is very large. In this case, the contribution of one cell to the total Chi-square score becomes a useful way of establishing the nature of dependency.

カイ二乗統計値と総合慣性

Chi-square statistic and the total inertia

As mentioned above, the total inertia is the amount of the information contained in the data table.

It’s called ϕ2 (squared phi) and is calculated as follow:

\[ \phi^2 = \frac{\chi^2}{grand.total} \]

phi2 <- as.numeric(chisq$statistic/sum(housetasks))
phi2
## [1] 1.11494

The square root of ϕ2 are called trace and may be interpreted as a correlation coefficient(Bendixen, 2003). Any value of the trace > 0.2 indicates a significant dependency between rows and columns (Bendixen M., 2003)

分割表のグラフィアルな表示:mosaic plot

Graphical representation of a contingency table: Mosaic plot

Mosaic plot is used to visualize a contingency table in order to examine the association between categorical variables.

The function mosaicplot() [in garphics package] can be used.

library("graphics")
# Mosaic plot of observed values
mosaicplot(housetasks,  las=2, col="steelblue",
           main = "housetasks - observed counts")

# Mosaic plot of expected values
mosaicplot(chisq$expected,  las=2, col = "gray",
           main = "housetasks - expected counts")

In these plots, column variables are firstly splited (vertical split) and then row variables are splited(horizontal split). For each cell, the height of bars is proportional to the observed relative frequency it contains:

\[ \frac{cell.value}{column.sum} \]

The blue plot, is the mosaic plot of the observed values. The gray one is the mosaic plot of the expected values under null hypothesis.

 If row and column variables were completely independent the mosaic bars for the observed values (blue graph) would be aligned as the mosaic bars for the expected values (gray graph).

It’s also possible to color the mosaic plot according to the value of the standardized residuals:

mosaicplot(housetasks, shade = TRUE, las=2,main = "housetasks")

G検定:尤度比検定

G-test: Likelihood ratio test

The G–test of independence is an alternative to the chi-square test of independence, and they will give approximately the same conclusion.

The test is based on the likelihood ratio defined as follow:

\[ ratio = \frac{o}{e} \]

This test is called G-test or likelihood ratio test or maximum likelihood statistical significance test) and can be used in situations where Chi-square tests were previously recommended.

The G-test is generally defined as follow:

\[ G = 2 * \sum{o * log(\frac{o}{e})} \]

The distribution of G is approximately a chi-squared distribution, with the same number of degrees of freedom as in the corresponding chi-squared test:

\[df = (r - 1)(c - 1)\]

The commonly used Pearson Chi-square test is, in fact, just an approximation of the log-likelihood ratio on which the G-tests are based.

Remember that, the Chi-square formula is:

\[ \chi^2 = \sum{\frac{(o - e)^2}{e}} \]

Rでの尤度比検定

Likelihood ratio test in R

The functions likelihood.test()[in Deducer package] or G.test()[in RVAideMemoire] can be used to perform a G-test on a contingency table.

We’ll use the package RVAideMemoire which can be installed as follow : install.packages(“RVAideMemoire”).

The function G.test() work as chisq.test():

library("RVAideMemoire")
## Warning: package 'RVAideMemoire' was built under R version 3.3.2
## *** Package RVAideMemoire v 0.9-64 ***
gtest <- G.test(as.matrix(housetasks))
## Warning in G.test(as.matrix(housetasks)): G test should not be used with 0
## values
gtest
## 
##  G-test
## 
## data:  as.matrix(housetasks)
## G = 1907.7, df = 36, p-value < 2.2e-16

尤度比を用いて行と列の連関を解釈する

Interpret the association between rows and columns using likelihood ratio

To interpret the association between the rows and the columns of the contingency table, the likelihood ratio can be used as an index (i):

\[ ratio = \frac{o}{e} \]

For a given cell,

  • If ratio > 1, there is an “attraction” (association) between the corresponding column and row
  • If ratio < 1, there is a “repulsion” between the corresponding column and row The ratio can be calculated as follow:
ratio <- chisq$observed/chisq$expected
round(ratio,3)
##           妻が 交代で  夫が 一緒に
## 洗濯     2.576  0.546 0.052  0.078
## ディナー 2.356  0.898 0.150  0.090
## 夕食     2.072  0.699 0.297  0.412
## 朝食     1.702  1.766 0.490  0.171
## 整頓     1.263  0.619 0.038  1.601
## 料理     0.823  1.458 0.162  1.607
## 買物     0.799  1.316 0.343  1.570
## 公的     0.363  3.290 1.097  0.535
## 運転     0.209  2.519 2.470  0.074
## 財務     0.334  0.790 0.851  2.001
## 保険     0.167  0.049 1.745  1.898
## 修繕     0.000  0.125 4.439  0.042
## 休日     0.000  0.043 0.172  3.276

Note that, you can also use the R code : gtest\(observed/gtest\)expected

The package corrplot can be used to make a graph of the likelihood ratio:

corrplot(ratio, is.cor = FALSE)

The image above confirms our previous observations:

  • The rows Laundry, Main_meal and Dinner are associated with the column Wife
  • Repairs are done more often by the Husband
  • Holidays are taken Jointly Let’s take the log(ratio) to see the attraction and the repulsion in different colors:

  • If ratio < 1 => log(ratio) < 0 (negative values) => red color
  • If ratio > 1 = > log(ratio) > 0 (positive values) => blue color We’ll also add a small value (0.5) to all cells to avoid log(0):

corrplot(log2(ratio + 0.5), is.cor = FALSE)

対応分析

Correspondence analysis

Correspondence analysis (CA) is required for large contingency table.

It used to graphically visualize row points and column points in a low dimensional space.

CA is a dimensional reduction method applied to a contingency table. The information retained by each dimension is called eigenvalue.

The total information (or inertia) contained in the data is called phi (ϕ2) and can be calculated as follow:

\[ \phi^2 = \frac{\chi^2}{grand.total} \]

For a given axis, the eigenvalue (λ) is computed as follow:

\[ \lambda_{axis} = \sum{\frac{row.sum}{grand.total} * row.coord^2} \]

Or equivalently

\[ \lambda_{axis} = \sum{\frac{col.sum}{grand.total} * col.coord^2} \]

\[ i = 1 + \sum{\frac{row.coord * col.coord}{\sqrt{\lambda}}} \]

If there is an attraction the corresponding row and column coordinates have the same sign on the axes. If there is a repulsion the corresponding row and column coordinates have different signs on the axes. A high value indicates a strong attraction or repulsion

CA - 標準化残査に対する特異値分解

CA - Singular value decomposition of the standardized residuals

Correspondence analysis (CA) is used to represent graphically the table of distances between row variables or between column variables.

CA approach includes the following steps:

\[ S = \frac{o - e}{\sqrt{e}} \]

In fact, S is just the square roots of the terms comprising χ2 statistic.

STEP II. Compute the singular value decomposition (SVD) of the standardized residuals.

Let M be: M=1 sqrt(grand.total) ×S

SVD means that we want to find orthogonal matrices U and V, together with a diagonal matrix Δ, such that:

\[ M = U \Delta V^T \]

(Phillip M. Yelland, 2010)

\[ \lambda = \delta^2 \]

\[ row.coord = \frac{U * \delta }{\sqrt{row.mass}} \]

The coordinates of columns are:

\[ col.coord = \frac{V * \delta }{\sqrt{col.mass}} \]

Compute SVD in R:

# Grand total
n <- sum(housetasks)
# Standardized residuals
residuals <- chisq$residuals/sqrt(n)
# Number of dimensions
nb.axes <- min(nrow(residuals)-1, ncol(residuals)-1)
# Singular value decomposition
res.svd <- svd(residuals, nu = nb.axes, nv = nb.axes)
res.svd
## $d
## [1] 7.368102e-01 6.670853e-01 3.564385e-01 1.012225e-16
## 
## $u
##              [,1]        [,2]        [,3]
##  [1,] -0.42762952 -0.23587902 -0.28228398
##  [2,] -0.35197789 -0.21761257 -0.13633376
##  [3,] -0.23391020 -0.11493572 -0.14480767
##  [4,] -0.19557424 -0.19231779  0.17519699
##  [5,] -0.14136307  0.17221046 -0.06990952
##  [6,] -0.06528142  0.16864510  0.19063825
##  [7,] -0.04189568  0.15859251  0.14910925
##  [8,]  0.07216535 -0.08919754  0.60778606
##  [9,]  0.28421536 -0.27652950  0.43123528
## [10,]  0.09354184  0.23576569  0.02484968
## [11,]  0.24793268  0.20050833 -0.22918636
## [12,]  0.63820133 -0.39850534 -0.40738669
## [13,]  0.10379321  0.65156733 -0.11011902
## 
## $v
##             [,1]       [,2]       [,3]
## [1,] -0.66679846 -0.3211267 -0.3289692
## [2,] -0.03220853 -0.1668171  0.9085662
## [3,]  0.73643655 -0.4217418 -0.2476526
## [4,]  0.10956112  0.8313745 -0.0703917
sv <- res.svd$d[1:nb.axes] # singular value
u <-res.svd$u
v <- res.svd$v

固有値とスクリープロット

Eigenvalues and screeplot

# Eigenvalues
eig <- sv^2
# Variances in percentage
variance <- eig*100/sum(eig)
# Cumulative variances
cumvar <- cumsum(variance)
eig<- data.frame(eig = eig, variance = variance,
                     cumvariance = cumvar)
head(eig)
##         eig variance cumvariance
## 1 0.5428893 48.69222    48.69222
## 2 0.4450028 39.91269    88.60491
## 3 0.1270484 11.39509   100.00000
    eig variance cumvariance

1 0.5428893 48.69222 48.69222 2 0.4450028 39.91269 88.60491 3 0.1270484 11.39509 100.00000

barplot(eig[, 2], names.arg=1:nrow(eig), 
       main = "Variances",
       xlab = "Dimensions",
       ylab = "Percentage of variances",
       col ="steelblue")
# Add connected line segments to the plot
lines(x = 1:nrow(eig), eig[, 2], 
      type="b", pch=19, col = "red")

How many dimensions to retain?:

  1. The maximum number of axes in the CA is :

\[ nb.axes = min( r-1, c-1) \]

r and c are respectively the number of rows and columns in the table.

  1. Use elbow method

行スコア

Row coordinates

We can use the function apply to perform arbitrary operations on the rows and columns of a matrix.

A simplified format is:

apply(X, MARGIN, FUN, …) * x: a matrix * MARGIN: allowed values can be 1 or 2. 1 specifies that we want to operate on the rows of the matrix. 2 specifies that we want to operate on the column. * FUN: the function to be applied * …: optional arguments to FUN

# row sum
row.sum <- apply(housetasks, 1, sum)
# row mass
row.mass <- row.sum/n
# row coord = sv * u /sqrt(row.mass)
cc <- t(apply(u, 1, '*', sv)) # each row X sv
row.coord <- apply(cc, 2, '/', sqrt(row.mass))
rownames(row.coord) <- rownames(housetasks)
colnames(row.coord) <- paste0("Dim.", 1:nb.axes)
round(row.coord,3)
##           Dim.1  Dim.2  Dim.3
## 洗濯     -0.992 -0.495 -0.317
## ディナー -0.876 -0.490 -0.164
## 夕食     -0.693 -0.308 -0.207
## 朝食     -0.509 -0.453  0.220
## 整頓     -0.394  0.434 -0.094
## 料理     -0.189  0.442  0.267
## 買物     -0.118  0.403  0.203
## 公的      0.227 -0.254  0.923
## 運転      0.742 -0.653  0.544
## 財務      0.271  0.618  0.035
## 保険      0.647  0.474 -0.289
## 修繕      1.529 -0.864 -0.472
## 休日      0.252  1.435 -0.130
# plot
plot(row.coord, pch=19, col = "blue")
text(row.coord, labels =rownames(row.coord), pos = 3, col ="blue")
abline(v=0, h=0, lty = 2)

列スコア

Column coordinates

# Coordinates of columns
col.sum <- apply(housetasks, 2, sum)
col.mass <- col.sum/n
# coordinates sv * v /sqrt(col.mass)
cc <- t(apply(v, 1, '*', sv))
col.coord <- apply(cc, 2, '/', sqrt(col.mass))
rownames(col.coord) <- colnames(housetasks)
colnames(col.coord) <- paste0("Dim", 1:nb.axes)
head(col.coord)
##               Dim1       Dim2        Dim3
## 妻が   -0.83762154 -0.3652207 -0.19991139
## 交代で -0.06218462 -0.2915938  0.84858939
## 夫が    1.16091847 -0.6019199 -0.18885924
## 一緒に  0.14942609  1.0265791 -0.04644302
# plot
plot(col.coord, pch=17, col = "red")
text(col.coord, labels =rownames(col.coord), pos = 3, col ="red")
abline(v=0, h=0, lty = 2)

連関をみるための行と列のBiplot

Biplot of rows and columns to view the association

xlim <- range(c(row.coord[,1], col.coord[,1]))*1.1
ylim <- range(c(row.coord[,2], col.coord[,2]))*1.1
# Plot of rows
plot(row.coord, pch=19, col = "blue", xlim = xlim, ylim = ylim)
text(row.coord, labels =rownames(row.coord), pos = 3, col ="blue")
# plot off columns
points(col.coord, pch=17, col = "red")
text(col.coord, labels =rownames(col.coord), pos = 3, col ="red")
abline(v=0, h=0, lty = 2)

You can interpret the distance between rows points or between column points but the distance between column points and row points are not meaningful.

診断

Diagnostic Recall that, the total inertia contained in the data is:

\[ \phi^2 = \frac{\chi^2}{n} = 1.11494 \]

Our two-dimensional plot captures about 88% of the total inertia of the table.

行と列の寄与

Contribution of rows and columns The contributions of a rows/columns to the definition of a principal axis are :

\[ row.contrib = \frac{row.mass * row.coord^2}{eigenvalue} \]

\[ col.contrib = \frac{col.mass * col.coord^2}{eigenvalue} \]

Contribution of rows in %

# contrib <- row.mass * row.coord^2/eigenvalue
cc <- apply(row.coord^2, 2, "*", row.mass)
row.contrib <- t(apply(cc, 1, "/", eig[1:nb.axes,1])) *100
round(row.contrib, 2)
##          Dim.1 Dim.2 Dim.3
## 洗濯     18.29  5.56  7.97
## ディナー 12.39  4.74  1.86
## 夕食      5.47  1.32  2.10
## 朝食      3.82  3.70  3.07
## 整頓      2.00  2.97  0.49
## 料理      0.43  2.84  3.63
## 買物      0.18  2.52  2.22
## 公的      0.52  0.80 36.94
## 運転      8.08  7.65 18.60
## 財務      0.88  5.56  0.06
## 保険      6.15  4.02  5.25
## 修繕     40.73 15.88 16.60
## 休日      1.08 42.45  1.21
corrplot(row.contrib, is.cor = FALSE)

Contribution of columns in %

# contrib <- col.mass * col.coord^2/eigenvalue
cc <- apply(col.coord^2, 2, "*", col.mass)
col.contrib <- t(apply(cc, 1, "/", eig[1:nb.axes,1])) *100
round(col.contrib, 2)
##         Dim1  Dim2  Dim3
## 妻が   44.46 10.31 10.82
## 交代で  0.10  2.78 82.55
## 夫が   54.23 17.79  6.13
## 一緒に  1.20 69.12  0.50
corrplot(col.contrib, is.cor = FALSE)

表示の質

Quality of the representation The quality of the representation is called COS2.

The quality of the representation of a row on an axis is:

\[ row.cos2 = \frac{row.coord^2}{d^2} \]

  • row.coord is the coordinate of the row on the axis
  • d2 is the squared distance from the average profile Recall that the distance between each row profile and the average row profile is:

\[ d^2(row_i, average.profile) = \sum{\frac{(row.profile_i - average.profile)^2}{average.profile}} \]

row.profile <- housetasks/row.sum
head(round(row.profile, 3))
##           妻が 交代で  夫が 一緒に
## 洗濯     0.886  0.080 0.011  0.023
## ディナー 0.810  0.131 0.033  0.026
## 夕食     0.713  0.102 0.065  0.120
## 朝食     0.586  0.257 0.107  0.050
## 整頓     0.434  0.090 0.008  0.467
## 料理     0.283  0.212 0.035  0.469
average.profile <- col.sum/n
head(round(average.profile, 3))
##   妻が 交代で   夫が 一緒に 
##  0.344  0.146  0.218  0.292

The R code below computes the distance from the average profile for all the row variables

d2.row <- apply(row.profile, 1, 
                function(row.p, av.p){sum(((row.p - av.p)^2)/av.p)}, 
                average.rp)
head(round(d2.row,3))
##     洗濯 ディナー     夕食     朝食     整頓     料理 
##    1.329    1.034    0.618    0.512    0.353    0.302

The cos2 of rows on the factor map are:

row.cos2 <- apply(row.coord^2, 2, "/", d2.row)
round(row.cos2, 3)
##          Dim.1 Dim.2 Dim.3
## 洗濯     0.740 0.185 0.075
## ディナー 0.742 0.232 0.026
## 夕食     0.777 0.154 0.070
## 朝食     0.505 0.400 0.095
## 整頓     0.440 0.535 0.025
## 料理     0.118 0.646 0.236
## 買物     0.064 0.748 0.189
## 公的     0.053 0.066 0.881
## 運転     0.432 0.335 0.233
## 財務     0.161 0.837 0.003
## 保険     0.576 0.309 0.115
## 修繕     0.707 0.226 0.067
## 休日     0.030 0.962 0.008

visualize the cos2:

corrplot(row.cos2, is.cor = FALSE)

列列のCos2

Cos2 of columns

\[ col.cos2 = \frac{col.coord^2}{d^2} \]

col.profile <- t(housetasks)/col.sum
col.profile <- t(col.profile)
#head(round(col.profile, 3))
average.profile <- row.sum/n
#head(round(average.profile, 3))

The R code below computes the distance from the average profile for all the column variables

d2.col <- apply(col.profile, 2, 
        function(col.p, av.p){sum(((col.p - av.p)^2)/av.p)}, 
        average.profile)
#round(d2.col,3)

The cos2 of columns on the factor map are:

col.cos2 <- apply(col.coord^2, 2, "/", d2.col)
round(col.cos2, 3)
##         Dim1  Dim2  Dim3
## 妻が   0.802 0.152 0.046
## 交代で 0.005 0.105 0.890
## 夫が   0.772 0.208 0.020
## 一緒に 0.021 0.977 0.002
corrplot(col.cos2, is.cor = FALSE)

サプリメンタリーな行変数、列変数

Supplementary rows/columns ## サプリメンタリー行スコア The supplementary row coordinates

\[ sup.row.coord = sup.row.profile * \frac{v}{\sqrt{col.mass}} \]

# Supplementary row
sup.row <- as.data.frame(housetasks["料理",, drop = FALSE])
# Supplementary row profile
sup.row.sum <- apply(sup.row, 1, sum)
sup.row.profile <- sweep(sup.row, 1, sup.row.sum, "/")
# V/sqrt(col.mass)
vv <- sweep(v, 1, sqrt(col.mass), FUN = "/")
# Supplementary row coord
sup.row.coord <- as.matrix(sup.row.profile) %*% vv
sup.row.coord
##            [,1]      [,2]      [,3]
## 料理 -0.1889641 0.4419662 0.2669493
# COS2 = coor^2/Distance from average profile
d2.row <- apply(sup.row.profile, 1, 
        function(row.p, av.p){sum(((row.p - av.p)^2)/av.p)}, 
        average.rp)
sup.row.cos2 <- sweep(sup.row.coord^2, 1, d2.row, FUN = "/")

Rにおける(対応分析)パッケージ

Packages in R

There are many packages for CA:

library(FactoMineR)
res.ca <- CA(housetasks, graph = F)
# print
res.ca
## **Results of the Correspondence Analysis (CA)**
## The row variable has  13  categories; the column variable has 4 categories
## The chi square of independence between the two variables is equal to 1944.456 (p-value =  0 ).
## *The results are available in the following objects:
## 
##    name              description                   
## 1  "$eig"            "eigenvalues"                 
## 2  "$col"            "results for the columns"     
## 3  "$col$coord"      "coord. for the columns"      
## 4  "$col$cos2"       "cos2 for the columns"        
## 5  "$col$contrib"    "contributions of the columns"
## 6  "$row"            "results for the rows"        
## 7  "$row$coord"      "coord. for the rows"         
## 8  "$row$cos2"       "cos2 for the rows"           
## 9  "$row$contrib"    "contributions of the rows"   
## 10 "$call"           "summary called parameters"   
## 11 "$call$marge.col" "weights of the columns"      
## 12 "$call$marge.row" "weights of the rows"

Results of the Correspondence Analysis (CA) The row variable has 13 categories; the column variable has 4 categories The chi square of independence between the two variables is equal to 1944.456 (p-value = 0 ). *The results are available in the following objects: name description
1 “\(eig" "eigenvalues" 2 "\)col” “results for the columns”
3 “\(col\)coord” “coord. for the columns”
4 “\(col\)cos2” “cos2 for the columns”
5 “\(col\)contrib” “contributions of the columns” 6 “\(row" "results for the rows" 7 "\)row\(coord" "coord. for the rows" 8 "\)row\(cos2" "cos2 for the rows" 9 "\)row\(contrib" "contributions of the rows" 10 "\)call” “summary called parameters”
11 “\(call\)marge.col” “weights of the columns”
12 “\(call\)marge.row” “weights of the rows”

# eigenvalue
head(res.ca$eig)[, 1:2]
##       eigenvalue percentage of variance
## dim 1  0.5428893               48.69222
## dim 2  0.4450028               39.91269
## dim 3  0.1270484               11.39509
    eigenvalue percentage of variance

dim 1 5.428893e-01 4.869222e+01 dim 2 4.450028e-01 3.991269e+01 dim 3 1.270484e-01 1.139509e+01 dim 4 5.119700e-33 4.591904e-31

# barplot of percentage of variance
barplot(res.ca$eig[,2], names.arg = rownames(res.ca$eig))

# Plot row points
plot(res.ca, invisible ="col")

# Plot column points
plot(res.ca, invisible ="row")

# Biplot of rows and columns
plot(res.ca)

関連情報

Infos

 This analysis has been performed using R software (ver. 3.1.2), FactoMineR (ver. 1.29) and factoextra (ver. 1.0.2)