TCGAbiolinks is able to access The National Cancer Institute (NCI) Genomic Data Commons (GDC) thourogh their
GDC Application Programming Interface (API) to search, download and prepare relevant data for data analysis in R.

You may install the stable version from Biocondcutor, or the development version using devtools::install_github(‘BioinformaticsFMRP/TCGAbiolinks’).

Please use Github issues if you want to file bug reports or feature requests.

library(TCGAbiolinks)
library(SummarizedExperiment)
library(dplyr)
library(DT)

1 Useful queries

Data query: different sources

There are two available sources to download GDC data using TCGAbiolunks: - GDC Legacy Archive : provides access to an unmodified copy of data that was previously stored in CGHub and in the TCGA Data Portal hosted by the TCGA Data Coordinating Center (DCC), in which uses as references GRCh37 (hg19) and GRCh36 (hg18). - GDC harmonized database: data available was harmonized against GRCh38 (hg38) using GDC Bioinformatics Pipelines which provides methods to the standardization of biospecimen and clinical data.

1.1 Recurrent tumor samples

In this example we will access the harmonized database (legacy = FALSE) and search for all DNA methylation data for recurrent glioblastoma multiform (GBM) and low grade gliomas (LGG) samples.

query <- GDCquery(project = c("TCGA-GBM", "TCGA-LGG"),
                  data.category = "DNA Methylation",
                  legacy = FALSE,
                  platform = c("Illumina Human Methylation 450"),
                  sample.type = "Recurrent Solid Tumor"
)
datatable(query$results[[1]], 
              filter = 'top',
              options = list(scrollX = TRUE, keys = TRUE, pageLength = 5), 
              rownames = FALSE)

1.2 Finding the match between file names and barcode for Controlled data.

This exmaple shows how the user can search for breast cancer Raw Sequencing Data (“Controlled”) and verify the name of the files and the barcodes associated with it.

query <- GDCquery(project = c("TCGA-BRCA"),
                  data.category = "Raw Sequencing Data",  
                  sample.type = "Primary solid Tumor")
# Only first 100 to make render faster
datatable(query$results[[1]][1:100,c("file_name","cases")], 
              filter = 'top',
              options = list(scrollX = TRUE, keys = TRUE, pageLength = 5), 
              rownames = FALSE)

2 Downloading data e preparing for analysis

Data download: Methods differences

There are two methods to download GDC data using TCGAbiolunks: - client: this method creates a MANIFEST file and download the data using GDC Data Transfer Tool this method is more reliable but it might be slower compared to the api method. - api: this methods used the GDC Application Programming Interface (API) to downlaod the data. This will create a MANIFEST file and the data downloaded will be compressed into a tar.gz file. If the size and the number of the files are too big this tar.gz will be too big whicih might have a high probability of download failure. To solve that we created the chunks.per.download argument which will split the files into small chunks, for example, if chunks.per.download is equal to 10 we will download only 10 files inside each tar.gz.

Data prepared: SummarizedExperiment object

A SummarizedExperiment object has three main matrices that can be accessed using the SummarizedExperiment package):

  • Sample matrix information is accessed via colData(data): stores sample information. TCGAbiolinks will add indexed clinical data and subtype information from marker TCGA papers.
  • Assay matrix information is accessed via assay(data): stores molecular data
  • Feature matrix information (gene information) is accessed via rowRanges(data): stores metadata about the features, including their genomic ranges

2.1 Search and download data from legacy database using GDC api method

In this example we will download gene expression data from legacy database (data aligned against genome of reference hg19) using GDC api method and we will show object data and metadata.

query <- GDCquery(project = "TCGA-GBM",
                           data.category = "Gene expression",
                           data.type = "Gene expression quantification",
                           platform = "Illumina HiSeq", 
                           file.type  = "normalized_results",
                           experimental.strategy = "RNA-Seq",
                           barcode = c("TCGA-14-0736-02A-01R-2005-01", "TCGA-06-0211-02A-02R-2005-01"),
                           legacy = TRUE)
GDCdownload(query, method = "api", chunks.per.download = 10)
data <- GDCprepare(query)
# Gene expression aligned against hg19.
datatable(as.data.frame(colData(data)), 
              options = list(scrollX = TRUE, keys = TRUE, pageLength = 5), 
              rownames = FALSE)
# Only first 100 to make render faster
datatable(assay(data)[1:100,], 
              options = list(scrollX = TRUE, keys = TRUE, pageLength = 5), 
              rownames = TRUE)
rowRanges(data)
## GRanges object with 21022 ranges and 3 metadata columns:
##                seqnames                 ranges strand |      gene_id
##                   <Rle>              <IRanges>  <Rle> |  <character>
##           A1BG    chr19   [58856544, 58864865]      - |         A1BG
##            A2M    chr12   [ 9220260,  9268825]      - |          A2M
##           NAT1     chr8   [18027986, 18081198]      + |         NAT1
##           NAT2     chr8   [18248755, 18258728]      + |         NAT2
##   RP11-986E7.7    chr14   [95058395, 95090983]      + | RP11-986E7.7
##            ...      ...                    ...    ... .          ...
##            FTX     chrX [ 73183790,  73513409]      - |          FTX
##   TMED7-TICAM2     chr5 [114914339, 114961858]      - | TMED7-TICAM2
##          TMED7     chr5 [114949205, 114968689]      - |        TMED7
##         TICAM2     chr5 [114914339, 114961876]      - |       TICAM2
##    SLC25A5-AS1     chrX [118599997, 118603061]      - |  SLC25A5-AS1
##                entrezgene ensembl_gene_id
##                 <numeric>     <character>
##           A1BG          1 ENSG00000121410
##            A2M          2 ENSG00000175899
##           NAT1          9 ENSG00000171428
##           NAT2         10 ENSG00000156006
##   RP11-986E7.7         12 ENSG00000273259
##            ...        ...             ...
##            FTX  100302692 ENSG00000230590
##   TMED7-TICAM2  100302736 ENSG00000251201
##          TMED7  100302736 ENSG00000134970
##         TICAM2  100302736 ENSG00000243414
##    SLC25A5-AS1  100303728 ENSG00000224281
##   -------
##   seqinfo: 24 sequences from an unspecified genome; no seqlengths

2.2 Search and download data for two samples from database

In this example we will download gene expression quantification from harmonized database (data aligned against genome of reference hg38) using GDC Data Transfer Tool. Also, it shows the object data and metadata.

# Gene expression aligned against hg38
query <- GDCquery(project = "TCGA-GBM",
                  data.category = "Transcriptome Profiling",
                  data.type = "Gene Expression Quantification", 
                  workflow.type = "HTSeq - Counts",
                  barcode = c("TCGA-14-0736-02A-01R-2005-01", "TCGA-06-0211-02A-02R-2005-01"))
GDCdownload(query, method = "client")
data <- GDCprepare(query)
datatable(as.data.frame(colData(data)), 
              options = list(scrollX = TRUE, keys = TRUE, pageLength = 5), 
              rownames = FALSE)
datatable(assay(data)[1:100,], 
              options = list(scrollX = TRUE, keys = TRUE, pageLength = 5), 
              rownames = TRUE)
datatable(as.data.frame(values(data)),
              options = list(scrollX = TRUE, keys = TRUE, pageLength = 5), 
              rownames = TRUE)

3 Clinical data

Clinical data: different sources

In GDC database the clinical data can be retrieved from two sources:

  • indexed clinical: a refined clinical data that is created using the XML files.
  • XML files

There are two main differences:

  • XML has more information: radiation, drugs information, follow-ups, biospecimen, etc. So the indexed one is only a subset of the XML files
  • The indexed data contains the updated data with the follow up informaiton. For example: if the patient is alive in the first time clinical data was collect and the in the next follow-up he is dead, the indexed data will show dead. The XML will have two fields, one for the first time saying he is alive (in the clinical part) and the follow-up saying he is dead. You can see this case here:

3.1 Clinical data: Get clinical indexed data

In this example we will fetch clinical indexed data.

clinical <- GDCquery_clinic(project = "TCGA-LUAD", type = "clinical")
datatable(clinical, filter = 'top', 
          options = list(scrollX = TRUE, keys = TRUE, pageLength = 5),  
          rownames = FALSE)

3.2 Clinical data: Parse XML clinical data

In this example we will fetch clinical data directly from the clinical XML files.

query <- GDCquery(project = "TCGA-COAD", 
                  data.category = "Clinical", 
                  barcode = c("TCGA-RU-A8FL","TCGA-AA-3972"))
GDCdownload(query)
clinical <- GDCprepare_clinic(query, clinical.info = "patient")
datatable(clinical, options = list(scrollX = TRUE, keys = TRUE), rownames = FALSE)
clinical.drug <- GDCprepare_clinic(query, clinical.info = "drug")
datatable(clinical.drug, options = list(scrollX = TRUE, keys = TRUE), rownames = FALSE)
clinical.radiation <- GDCprepare_clinic(query, clinical.info = "radiation")
datatable(clinical.radiation, options = list(scrollX = TRUE,  keys = TRUE), rownames = FALSE)
clinical.admin <- GDCprepare_clinic(query, clinical.info = "admin")
datatable(clinical.admin, options = list(scrollX = TRUE, keys = TRUE), rownames = FALSE)

3.3 Clinical data inconsistencies

Clinical data inconsistencies

Some inconsisentecies have been found in the indexed clinical data and are being investigated by the GDC team. These inconsistencies are:

  • Vital status field is not correctly updated
  • Tumor Grade field is not being filled
  • Progression or Recurrence field is not being filled

3.3.0.1 Vital status inconsistancie

# Get XML files and parse them
clin.query <- GDCquery(project = "TCGA-READ", data.category = "Clinical", barcode = "TCGA-F5-6702")
GDCdownload(clin.query)
clinical.patient <- GDCprepare_clinic(clin.query, clinical.info = "patient")
clinical.patient.followup <- GDCprepare_clinic(clin.query, clinical.info = "follow_up")

# Get indexed data
clinical.index <- GDCquery_clinic("TCGA-READ")
select(clinical.patient,vital_status,days_to_death,days_to_last_followup) %>% datatable
select(clinical.patient.followup, vital_status,days_to_death,days_to_last_followup) %>% datatable
# Vital status should be the same in the follow up table 
filter(clinical.index,submitter_id == "TCGA-F5-6702") %>% select(vital_status,days_to_death,days_to_last_follow_up) %>% datatable

#### Progression or Recurrence and Grande inconsistancie

# Get XML files and parse them
recurrent.samples <- GDCquery(project = "TCGA-LIHC",
                             data.category = "Transcriptome Profiling",
                             data.type = "Gene Expression Quantification", 
                             workflow.type = "HTSeq - Counts",
                             sample.type =  "Recurrent Solid Tumor")$results[[1]] %>% select(cases)
recurrent.patients <- substr(recurrent.samples$cases,1,12)
clin.query <- GDCquery(project = "TCGA-LIHC", data.category = "Clinical", barcode = recurrent.patients)
GDCdownload(clin.query)
clinical.patient <- GDCprepare_clinic(clin.query, clinical.info = "patient") 
# Get indexed data
GDCquery_clinic("TCGA-LIHC") %>% filter(submitter_id %in% recurrent.patients) %>% 
    select(progression_or_recurrence,days_to_recurrence,tumor_grade) %>% datatable
# XML data
clinical.patient %>% select(bcr_patient_barcode,neoplasm_histologic_grade) %>% datatable

4 Mutation data

This exmaple will download MAF (mutation annotation files) for variant calling pipeline muse. Pipelines options are: muse, varscan2, somaticsniper, mutect. For more information please access GDC docs.

acc.maf <- GDCquery_Maf("ACC", pipelines = "muse")
# Only first 100 to make render faster
datatable(acc.maf[1:100,],
              filter = 'top',
              options = list(scrollX = TRUE, keys = TRUE, pageLength = 5), 
              rownames = FALSE)

5 Session Information

devtools::session_info('TCGAbiolinks')
##  setting  value                                             
##  version  R Under development (unstable) (2017-01-23 r72020)
##  system   x86_64, linux-gnu                                 
##  ui       X11                                               
##  language (EN)                                              
##  collate  en_US.UTF-8                                       
##  tz       America/Sao_Paulo                                 
##  date     2017-02-04                                        
## 
##  package              * version  date      
##  affy                   1.52.0   2016-10-18
##  affyio                 1.44.0   2016-10-18
##  ALL                    1.16.0   2016-10-20
##  annotate               1.52.1   2016-12-23
##  AnnotationDbi          1.36.1   2017-01-24
##  ape                    4.0      2016-12-01
##  aroma.light            3.4.0    2016-10-18
##  assertthat             0.1      2013-12-06
##  BH                     1.62.0-1 2016-11-19
##  Biobase              * 2.34.0   2016-10-18
##  BiocGenerics         * 0.20.0   2016-10-18
##  BiocInstaller          1.24.0   2016-10-18
##  BiocParallel           1.8.1    2016-11-01
##  biomaRt                2.30.0   2016-10-18
##  Biostrings             2.42.1   2017-01-24
##  bitops                 1.0-6    2013-08-17
##  c3net                  1.1.1    2012-07-23
##  caTools                1.17.1   2014-09-10
##  circlize               0.3.9    2016-09-26
##  class                  7.3-14   2015-08-30
##  cluster                2.0.5    2016-10-08
##  clusterProfiler        3.2.11   2017-01-24
##  codetools              0.2-15   2016-10-05
##  colorspace             1.3-2    2016-12-14
##  ComplexHeatmap         1.12.0   2016-10-14
##  ConsensusClusterPlus   1.38.0   2016-10-18
##  curl                   2.3      2016-11-24
##  data.table             1.10.4   2017-02-01
##  DBI                    0.5-1    2016-09-10
##  dendextend             1.4.0    2017-01-21
##  DEoptimR               1.0-8    2016-11-19
##  DESeq                  1.26.0   2016-10-18
##  dichromat              2.0-0    2013-01-24
##  digest                 0.6.12   2017-01-27
##  diptest                0.75-7   2015-06-08
##  dnet                   1.0.10   2017-01-27
##  DO.db                  2.9      2017-01-24
##  doParallel             1.0.10   2015-10-14
##  DOSE                   3.0.10   2017-01-24
##  downloader             0.4      2015-07-09
##  dplyr                * 0.5.0    2016-06-24
##  EDASeq                 2.8.0    2016-10-18
##  edgeR                  3.16.5   2016-12-23
##  evaluate               0.10     2016-10-11
##  exactRankTests         0.8-28   2015-02-20
##  fastmatch              1.1-0    2017-01-28
##  fgsea                  1.0.2    2016-12-23
##  flexmix                2.3-13   2015-01-17
##  foreach                1.4.3    2015-10-13
##  fpc                    2.1-10   2015-08-14
##  futile.logger          1.4.3    2016-07-10
##  futile.options         1.0.0    2010-04-06
##  gdata                  2.17.0   2015-07-04
##  genefilter             1.56.0   2016-10-18
##  geneplotter            1.52.0   2016-10-18
##  GenomeInfoDb         * 1.10.2   2016-12-31
##  GenomicAlignments      1.10.0   2017-01-24
##  GenomicFeatures        1.26.2   2016-12-23
##  GenomicRanges        * 1.26.2   2017-01-24
##  GetoptLong             0.1.5    2016-09-26
##  ggplot2                2.2.1    2016-12-30
##  ggpubr                 0.1.1    2016-12-05
##  ggrepel                0.6.5    2016-11-24
##  ggsci                  2.0      2016-11-21
##  ggthemes               3.3.0    2016-11-24
##  GlobalOptions          0.0.10   2016-04-17
##  GO.db                  3.4.0    2017-01-24
##  GOSemSim               2.0.4    2017-01-24
##  gplots                 3.0.1    2016-03-30
##  graph                  1.52.0   2016-10-18
##  gridBase               0.4-7    2014-02-24
##  gridExtra              2.2.1    2016-02-29
##  gtable                 0.2.0    2016-02-26
##  gtools                 3.5.0    2015-05-29
##  hexbin                 1.27.1   2015-08-19
##  highr                  0.6      2016-05-09
##  hms                    0.3      2016-11-22
##  httr                   1.2.1    2016-07-03
##  hwriter                1.3.2    2014-09-10
##  igraph                 1.0.1    2015-06-26
##  infotheo               1.2.0    2014-07-26
##  IRanges              * 2.8.1    2017-01-24
##  irlba                  2.1.2    2016-09-21
##  iterators              1.0.8    2015-10-13
##  jsonlite               1.2      2016-12-31
##  KEGGgraph              1.32.0   2016-10-18
##  KEGGREST               1.14.0   2016-10-18
##  kernlab                0.9-25   2016-10-03
##  KernSmooth             2.23-15  2015-06-29
##  knitr                  1.15.8   2017-01-31
##  labeling               0.3      2014-08-23
##  lambda.r               1.1.9    2016-07-10
##  lattice                0.20-34  2016-09-06
##  latticeExtra           0.6-28   2016-02-09
##  lazyeval               0.2.0    2016-06-12
##  limma                  3.30.9   2017-01-27
##  locfit                 1.5-9.1  2013-04-20
##  magrittr               1.5      2014-11-22
##  markdown               0.7.7    2015-04-22
##  MASS                   7.3-45   2016-04-21
##  matlab                 1.0.2    2014-06-24
##  Matrix                 1.2-8    2017-01-20
##  matrixStats            0.51.0   2016-10-09
##  maxstat                0.7-24   2016-04-06
##  mclust                 5.2.2    2017-01-22
##  memoise                1.0.0    2016-01-29
##  mime                   0.5      2016-07-07
##  minet                  3.32.0   2017-01-24
##  modeltools             0.2-21   2013-09-02
##  munsell                0.4.3    2016-02-13
##  mvtnorm                1.0-5    2016-02-02
##  nlme                   3.1-130  2017-01-24
##  NMF                    0.20.6   2015-05-26
##  nnet                   7.3-12   2016-02-02
##  openssl                0.9.6    2016-12-31
##  org.Hs.eg.db           3.4.0    2016-10-18
##  parmigene              1.0.2    2012-07-23
##  pathview               1.14.0   2017-01-24
##  pkgmaker               0.22     2014-05-14
##  plogr                  0.1-1    2016-09-24
##  plyr                   1.8.4    2016-06-08
##  png                    0.1-7    2013-12-03
##  prabclus               2.2-6    2015-01-14
##  preprocessCore         1.36.0   2016-10-18
##  qvalue                 2.6.0    2016-10-18
##  R.methodsS3            1.7.1    2016-02-16
##  R.oo                   1.21.0   2016-11-01
##  R.utils                2.5.0    2016-11-07
##  R6                     2.2.0    2016-10-05
##  RColorBrewer           1.1-2    2014-12-07
##  Rcpp                   0.12.9.1 2017-01-24
##  RCurl                  1.95-4.8 2016-03-01
##  readr                  1.0.0    2016-08-03
##  registry               0.3      2015-07-08
##  reshape2               1.4.2    2016-10-22
##  Rgraphviz              2.18.0   2016-10-18
##  rjson                  0.2.15   2014-11-03
##  rngtools               1.2.4    2014-03-06
##  robustbase             0.92-7   2016-12-09
##  Rsamtools              1.26.1   2016-11-01
##  RSQLite                1.1-2    2017-01-08
##  rtracklayer            1.34.1   2017-01-24
##  rvest                  0.3.2    2016-06-17
##  S4Vectors            * 0.12.1   2017-01-24
##  scales                 0.4.1    2016-11-09
##  selectr                0.3-1    2016-12-19
##  shape                  1.4.2    2014-11-05
##  ShortRead              1.32.0   2016-10-18
##  snow                   0.4-2    2016-10-14
##  stringi                1.1.2    2016-10-01
##  stringr                1.1.0    2016-08-19
##  SummarizedExperiment * 1.4.0    2016-10-18
##  supraHex               1.12.0   2016-10-18
##  survival               2.40-1   2016-10-30
##  survminer              0.2.4    2016-12-11
##  TCGAbiolinks         * 2.3.16   2017-02-01
##  tibble                 1.2      2016-08-26
##  tidyr                  0.6.1    2017-01-10
##  trimcluster            0.1-2    2012-10-29
##  viridis                0.3.4    2016-03-12
##  whisker                0.3-2    2013-04-28
##  XML                    3.98-1.5 2016-11-10
##  xml2                   1.1.1    2017-01-24
##  xtable                 1.8-2    2016-02-05
##  XVector                0.14.0   2017-01-24
##  yaml                   2.1.14   2016-11-12
##  zlibbioc               1.20.0   2016-10-18
##  source                                          
##  Bioconductor                                    
##  Bioconductor                                    
##  Bioconductor                                    
##  Bioconductor                                    
##  cran (@1.36.1)                                  
##  CRAN (R 3.3.2)                                  
##  Bioconductor                                    
##  CRAN (R 3.2.2)                                  
##  CRAN (R 3.3.2)                                  
##  Bioconductor                                    
##  Bioconductor                                    
##  Bioconductor                                    
##  Bioconductor                                    
##  Bioconductor                                    
##  Bioconductor                                    
##  CRAN (R 3.2.2)                                  
##  CRAN (R 3.4.0)                                  
##  CRAN (R 3.2.2)                                  
##  CRAN (R 3.4.0)                                  
##  CRAN (R 3.4.0)                                  
##  CRAN (R 3.4.0)                                  
##  Bioconductor                                    
##  CRAN (R 3.4.0)                                  
##  CRAN (R 3.3.2)                                  
##  cran (@1.12.0)                                  
##  Bioconductor                                    
##  CRAN (R 3.3.2)                                  
##  CRAN (R 3.4.0)                                  
##  CRAN (R 3.3.0)                                  
##  cran (@1.4.0)                                   
##  CRAN (R 3.3.2)                                  
##  Bioconductor                                    
##  CRAN (R 3.2.2)                                  
##  cran (@0.6.12)                                  
##  CRAN (R 3.3.0)                                  
##  cran (@1.0.10)                                  
##  Bioconductor                                    
##  CRAN (R 3.2.2)                                  
##  cran (@3.0.10)                                  
##  CRAN (R 3.2.2)                                  
##  CRAN (R 3.3.0)                                  
##  Bioconductor                                    
##  Bioconductor                                    
##  CRAN (R 3.3.0)                                  
##  cran (@0.8-28)                                  
##  CRAN (R 3.4.0)                                  
##  Bioconductor                                    
##  CRAN (R 3.3.0)                                  
##  CRAN (R 3.2.2)                                  
##  CRAN (R 3.3.0)                                  
##  CRAN (R 3.3.0)                                  
##  CRAN (R 3.2.2)                                  
##  CRAN (R 3.2.2)                                  
##  Bioconductor                                    
##  Bioconductor                                    
##  Bioconductor                                    
##  Bioconductor                                    
##  Bioconductor                                    
##  Bioconductor                                    
##  CRAN (R 3.3.0)                                  
##  CRAN (R 3.3.2)                                  
##  cran (@0.1.1)                                   
##  CRAN (R 3.3.2)                                  
##  cran (@2.0)                                     
##  CRAN (R 3.4.0)                                  
##  CRAN (R 3.3.0)                                  
##  Bioconductor                                    
##  cran (@2.0.4)                                   
##  CRAN (R 3.2.4)                                  
##  Bioconductor                                    
##  CRAN (R 3.2.2)                                  
##  CRAN (R 3.2.3)                                  
##  CRAN (R 3.2.3)                                  
##  CRAN (R 3.2.2)                                  
##  CRAN (R 3.2.2)                                  
##  CRAN (R 3.3.0)                                  
##  CRAN (R 3.4.0)                                  
##  CRAN (R 3.3.0)                                  
##  CRAN (R 3.2.2)                                  
##  CRAN (R 3.2.2)                                  
##  CRAN (R 3.4.0)                                  
##  Bioconductor                                    
##  CRAN (R 3.3.0)                                  
##  CRAN (R 3.2.2)                                  
##  CRAN (R 3.3.2)                                  
##  Bioconductor                                    
##  Bioconductor                                    
##  CRAN (R 3.3.0)                                  
##  CRAN (R 3.4.0)                                  
##  Github (yihui/knitr@b936c1e)                    
##  CRAN (R 3.2.2)                                  
##  CRAN (R 3.3.0)                                  
##  CRAN (R 3.4.0)                                  
##  CRAN (R 3.2.3)                                  
##  CRAN (R 3.3.0)                                  
##  Bioconductor                                    
##  CRAN (R 3.2.2)                                  
##  CRAN (R 3.2.2)                                  
##  CRAN (R 3.2.2)                                  
##  CRAN (R 3.4.0)                                  
##  CRAN (R 3.3.0)                                  
##  CRAN (R 3.4.0)                                  
##  CRAN (R 3.3.0)                                  
##  cran (@0.7-24)                                  
##  CRAN (R 3.4.0)                                  
##  CRAN (R 3.2.3)                                  
##  CRAN (R 3.3.0)                                  
##  Bioconductor                                    
##  CRAN (R 3.2.2)                                  
##  CRAN (R 3.2.3)                                  
##  CRAN (R 3.2.3)                                  
##  CRAN (R 3.4.0)                                  
##  CRAN (R 3.2.2)                                  
##  CRAN (R 3.4.0)                                  
##  CRAN (R 3.3.2)                                  
##  Bioconductor                                    
##  CRAN (R 3.4.0)                                  
##  Bioconductor                                    
##  CRAN (R 3.2.2)                                  
##  CRAN (R 3.3.2)                                  
##  CRAN (R 3.3.0)                                  
##  CRAN (R 3.2.2)                                  
##  CRAN (R 3.3.0)                                  
##  Bioconductor                                    
##  Bioconductor                                    
##  CRAN (R 3.2.3)                                  
##  CRAN (R 3.3.1)                                  
##  CRAN (R 3.3.2)                                  
##  CRAN (R 3.3.0)                                  
##  CRAN (R 3.2.2)                                  
##  Github (RcppCore/Rcpp@5a99a86)                  
##  CRAN (R 3.2.3)                                  
##  CRAN (R 3.4.0)                                  
##  CRAN (R 3.2.2)                                  
##  CRAN (R 3.3.1)                                  
##  Bioconductor                                    
##  CRAN (R 3.4.0)                                  
##  CRAN (R 3.2.2)                                  
##  CRAN (R 3.3.2)                                  
##  Bioconductor                                    
##  cran (@1.1-2)                                   
##  Bioconductor                                    
##  CRAN (R 3.3.0)                                  
##  Bioconductor                                    
##  CRAN (R 3.3.2)                                  
##  CRAN (R 3.3.2)                                  
##  CRAN (R 3.3.0)                                  
##  Bioconductor                                    
##  CRAN (R 3.3.0)                                  
##  CRAN (R 3.3.0)                                  
##  CRAN (R 3.4.0)                                  
##  Bioconductor                                    
##  Bioconductor                                    
##  CRAN (R 3.4.0)                                  
##  cran (@0.2.4)                                   
##  Github (BioinformaticsFMRP/TCGAbiolinks@7cc7bb0)
##  CRAN (R 3.3.0)                                  
##  cran (@0.6.1)                                   
##  CRAN (R 3.3.0)                                  
##  CRAN (R 3.3.2)                                  
##  CRAN (R 3.2.2)                                  
##  CRAN (R 3.3.2)                                  
##  CRAN (R 3.4.0)                                  
##  CRAN (R 3.2.3)                                  
##  Bioconductor                                    
##  CRAN (R 3.3.2)                                  
##  Bioconductor