Conditional probability, motivation


Conditional probability, definition


Example


Bayes' rule

\[ P(B ~|~ A) = \frac{P(A ~|~ B) P(B)}{P(A ~|~ B) P(B) + P(A ~|~ B^c)P(B^c)}. \]


Diagnostic tests


More definitions


More definitions


Example


Using Bayes' formula

\[ \begin{eqnarray*} P(D ~|~ +) & = &\frac{P(+~|~D)P(D)}{P(+~|~D)P(D) + P(+~|~D^c)P(D^c)}\\ \\ & = & \frac{P(+~|~D)P(D)}{P(+~|~D)P(D) + \{1-P(-~|~D^c)\}\{1 - P(D)\}} \\ \\ & = & \frac{.997\times .001}{.997 \times .001 + .015 \times .999}\\ \\ & = & .062 \end{eqnarray*} \]


More on this example


Likelihood ratios


Likelihood ratios


HIV example revisited


HIV example revisited