RESUME

     Ce projet porte sur l'étude des performances de la température dans plusieurs pays européens.Ainsi, on a recourt à une base de données décrivant une comparaison intrinsèque entre les températures mensuelles et annuelles au sein de 35 pays.
  
    Ayant réalisé ume méthode statistique multivariée qui est l'ACP(Analyse en Composantes Principales) nous avons traité le jeu de données "Temperature"
    
    

INTRODUCTION

         La temperature demeure un thème indispensable dans la vie de tous les humains partout dans le monde. Particulièrement et avec les changement climatiques qui s'imposent à notre planète, L'europe s'est beaucoup influencé par ces changement, c'est pourquoi  Il serait  intéressant d'analyser les etats de la température dans l'Europe en faisant une ACP  en relation avec des facteurs intérieurs étroitement liés à ce sujet.
         
         
                   

PROBLEMATIQUE

          Faire une comparaison entre les performances de la température dans les pays d'Europe en se basant sur les mêmes données.
          
          
          

DESCRIPTION DES DONNEES

                  On dispose d'un jeu de données contenant 35 individus (23 individus actifs et 12 individus supplémentaires) et 17 variables dont 12 sont quantitatives(january,february,march,april,may,june,july,august,september,october,november,december), 4 sont quantitatives supplémentaires(annual, amplitude,latitude,longitude) et une seule est qualitative supplémentaire (Area).

LOGICIELS UTILISES

               R 3.2.2 et RStudio
               

/Importation du jeu de données /

data=read.csv("C:/Users/user/Desktop/temperature.csv",sep=";",header=TRUE,dec=".",row.names=1)
View (data)

/ Description des données /

str(data)
## 'data.frame':    35 obs. of  17 variables:
##  $ January  : num  2.9 9.1 -0.2 3.3 -1.1 -0.4 4.8 -5.8 -5.9 -3.7 ...
##  $ February : num  2.5 9.7 0.1 3.3 0.8 -0.4 5 -6.2 -5 -2 ...
##  $ March    : num  5.7 11.7 4.4 6.7 5.5 1.3 5.9 -2.7 -0.3 1.9 ...
##  $ April    : num  8.2 15.4 8.2 8.9 11.6 5.8 7.8 3.1 7.4 7.9 ...
##  $ May      : num  12.5 20.1 13.8 12.8 17 11.1 10.4 10.2 14.3 13.2 ...
##  $ June     : num  14.8 24.5 16 15.6 20.2 15.4 13.3 14 17.8 16.9 ...
##  $ July     : num  17.1 27.4 18.3 17.8 22 17.1 15 17.2 19.4 18.4 ...
##  $ August   : num  17.1 27.2 18 17.8 21.3 16.6 14.6 14.9 18.5 17.6 ...
##  $ September: num  14.5 23.8 14.4 15 16.9 13.3 12.7 9.7 13.7 13.7 ...
##  $ October  : num  11.4 19.2 10 11.1 11.3 8.8 9.7 5.2 7.5 8.6 ...
##  $ November : num  7 14.6 4.2 6.7 5.1 4.1 6.7 0.1 1.2 2.6 ...
##  $ December : num  4.4 11 1.2 4.4 0.7 1.3 5.4 -2.3 -3.6 -1.7 ...
##  $ Annual   : num  9.9 17.8 9.1 10.3 10.9 7.8 9.3 4.8 7.1 7.7 ...
##  $ Amplitude: num  14.6 18.3 18.5 14.4 23.1 17.5 10.2 23.4 25.3 22.1 ...
##  $ Latitude : num  52.2 37.6 52.3 50.5 47.3 55.4 53.2 60.1 50.3 50 ...
##  $ Longitude: num  4.5 23.5 13.2 4.2 19 12.3 6.1 25 30.3 19.6 ...
##  $ Area     : Factor w/ 4 levels "East","North",..: 4 3 4 4 1 2 2 2 1 1 ...
summary(data)
##     January          February          March            April       
##  Min.   :-9.300   Min.   :-7.900   Min.   :-3.700   Min.   : 2.900  
##  1st Qu.:-1.550   1st Qu.:-0.150   1st Qu.: 1.600   1st Qu.: 7.250  
##  Median : 0.200   Median : 1.900   Median : 5.400   Median : 8.900  
##  Mean   : 1.346   Mean   : 2.217   Mean   : 5.229   Mean   : 9.283  
##  3rd Qu.: 4.900   3rd Qu.: 5.800   3rd Qu.: 8.500   3rd Qu.:12.050  
##  Max.   :10.700   Max.   :11.800   Max.   :14.100   Max.   :16.900  
##       May             June            July           August     
##  Min.   : 6.50   Min.   : 9.30   Min.   :11.10   Min.   :10.60  
##  1st Qu.:12.15   1st Qu.:15.40   1st Qu.:17.30   1st Qu.:16.65  
##  Median :13.80   Median :16.90   Median :18.90   Median :18.30  
##  Mean   :13.91   Mean   :17.41   Mean   :19.62   Mean   :18.98  
##  3rd Qu.:16.35   3rd Qu.:19.80   3rd Qu.:21.75   3rd Qu.:21.60  
##  Max.   :20.90   Max.   :24.50   Max.   :27.40   Max.   :27.20  
##    September        October         November         December    
##  Min.   : 7.90   Min.   : 4.50   Min.   :-1.100   Min.   :-6.00  
##  1st Qu.:13.00   1st Qu.: 8.65   1st Qu.: 3.200   1st Qu.: 0.25  
##  Median :14.80   Median :10.20   Median : 5.100   Median : 1.70  
##  Mean   :15.63   Mean   :11.00   Mean   : 6.066   Mean   : 2.88  
##  3rd Qu.:18.25   3rd Qu.:13.30   3rd Qu.: 7.900   3rd Qu.: 5.40  
##  Max.   :24.30   Max.   :19.40   Max.   :14.900   Max.   :12.00  
##      Annual        Amplitude        Latitude       Longitude    
##  Min.   : 4.50   Min.   :10.20   Min.   :37.20   Min.   : 0.00  
##  1st Qu.: 7.75   1st Qu.:14.90   1st Qu.:43.90   1st Qu.: 5.05  
##  Median : 9.70   Median :18.50   Median :50.00   Median :10.50  
##  Mean   :10.27   Mean   :18.32   Mean   :49.04   Mean   :13.01  
##  3rd Qu.:12.65   3rd Qu.:21.45   3rd Qu.:53.35   3rd Qu.:19.30  
##  Max.   :18.20   Max.   :27.60   Max.   :64.10   Max.   :37.60  
##     Area   
##  East : 8  
##  North: 8  
##  South:10  
##  West : 9  
##            
## 

/ Réalisation de l’ACP /

library(FactoMineR)
res.pca=PCA(data,ncp=2,quanti.sup=13:16,quali.sup=17,ind.sup=24:35)

Interprétation du cercle de corrélation

La 1ere composante principale est prédominante car elle resume pour elle seule 82.90 % de l’inertie totale;

La 2eme composante est relativement importante résumant 15,4 de l’inertie totale;

Ces 2 composantes donnent 98,3 comme inertie totale.

toutes les variables actives sont du même coté que la 1ere composante, nous notons que les mois “septembre” “octobre” et “avril” sont plus étroitement liés avec cette composante que les autres variables et ils representent des temperatures annuelles élevées.

Par analogie avec le nuage des indiv les villes qui sont situés au sud et qui ont des coordonnées elevés sur la 1ere composante (res\(ind\)coord[,1] ) presentent les températures annuelles elevées sont donc des villes chaudes et donc de latitudes faibles.

L’apmlitude est fortement liée à la 2ème composante et les valeurs les plus elevées de cette mesure ont été observées pour des villes de l’Est et les valeurs les plus basses ont été observées pour les villes européennes de l’ouest et le nord.

La longitude est liée à cet axe mais la relation n’est pas forte avec une corrélation de 0,41

/Caractérisation des variables/

Il existe une corrélation positive entre les températures mensuelles et annuelles et plus précisément dans deux périodes importantes : la saison estivale et la saison hivernale.

Par analogie au graphe des individus on peut considérer deux typologies des villes : les villes du sud caractérisées par des températures mensuelles et annuelles elevées et des latitudes faibles, et les villes du nord froides avec des hautes latitudes.

res.pca$var
## $coord
##               Dim.1       Dim.2
## January   0.8424506 -0.53135762
## February  0.8842848 -0.45583250
## March     0.9450521 -0.28731281
## April     0.9738876  0.09956500
## May       0.8698517  0.45781159
## June      0.8333141  0.54532195
## July      0.8441626  0.50866195
## August    0.9092443  0.40192442
## September 0.9856254  0.15253617
## October   0.9916246 -0.08476471
## November  0.9523567 -0.28941418
## December  0.8731191 -0.47286559
## 
## $cor
##               Dim.1       Dim.2
## January   0.8424506 -0.53135762
## February  0.8842848 -0.45583250
## March     0.9450521 -0.28731281
## April     0.9738876  0.09956500
## May       0.8698517  0.45781159
## June      0.8333141  0.54532195
## July      0.8441626  0.50866195
## August    0.9092443  0.40192442
## September 0.9856254  0.15253617
## October   0.9916246 -0.08476471
## November  0.9523567 -0.28941418
## December  0.8731191 -0.47286559
## 
## $cos2
##               Dim.1       Dim.2
## January   0.7097230 0.282340915
## February  0.7819596 0.207783268
## March     0.8931235 0.082548649
## April     0.9484570 0.009913188
## May       0.7566419 0.209591455
## June      0.6944124 0.297376030
## July      0.7126106 0.258736979
## August    0.8267252 0.161543240
## September 0.9714575 0.023267284
## October   0.9833194 0.007185057
## November  0.9069833 0.083760565
## December  0.7623370 0.223601871
## 
## $contrib
##              Dim.1      Dim.2
## January   7.134508 15.2810946
## February  7.860668 11.2458224
## March     8.978146  4.4677680
## April     9.534387  0.5365300
## May       7.606161 11.3436865
## June      6.980597 16.0948378
## July      7.163535 14.0035823
## August    8.310674  8.7431803
## September 9.765600  1.2592917
## October   9.884842  0.3888757
## November  9.117472  4.5333604
## December  7.663411 12.1019702
res.pca$var$cor
##               Dim.1       Dim.2
## January   0.8424506 -0.53135762
## February  0.8842848 -0.45583250
## March     0.9450521 -0.28731281
## April     0.9738876  0.09956500
## May       0.8698517  0.45781159
## June      0.8333141  0.54532195
## July      0.8441626  0.50866195
## August    0.9092443  0.40192442
## September 0.9856254  0.15253617
## October   0.9916246 -0.08476471
## November  0.9523567 -0.28941418
## December  0.8731191 -0.47286559
library(factoextra)
## Loading required package: ggplot2
## Warning: package 'ggplot2' was built under R version 3.2.4
## Loading required package: grid
fviz_pca_ind(res.pca,habillage=17)

Inertie des composantes principales

round(res.pca$eig,3)
##         eigenvalue percentage of variance
## comp 1       9.948                 82.898
## comp 2       1.848                 15.397
## comp 3       0.126                  1.052
## comp 4       0.038                  0.319
## comp 5       0.017                  0.139
## comp 6       0.013                  0.107
## comp 7       0.006                  0.049
## comp 8       0.002                  0.017
## comp 9       0.001                  0.009
## comp 10      0.001                  0.008
## comp 11      0.001                  0.004
## comp 12      0.000                  0.001
##         cumulative percentage of variance
## comp 1                             82.898
## comp 2                             98.295
## comp 3                             99.347
## comp 4                             99.666
## comp 5                             99.805
## comp 6                             99.912
## comp 7                             99.961
## comp 8                             99.978
## comp 9                             99.986
## comp 10                            99.994
## comp 11                            99.999
## comp 12                           100.000
fviz_screeplot(res.pca)

Coordonnées, contribution, cos2 des individus

res.pca$ind
## $coord
##                   Dim.1        Dim.2
## Amsterdam    0.22693852 -1.371378702
## Athens       7.60067204  0.930375742
## Berlin      -0.28785832  0.016454075
## Brussels     0.63117358 -1.177217640
## Budapest     1.66802839  1.712697730
## Copenhagen  -1.46239513 -0.492056307
## Dublin      -0.50524137 -2.673496925
## Elsinki     -4.03629712  0.462039367
## Kiev        -1.71222008  2.007597607
## Krakow      -1.25865727  0.874989077
## Lisbon       5.59928833 -1.554345838
## London       0.05764006 -1.573766723
## Madrid       4.06406743  0.697664862
## Minsk       -3.23789748  1.391289730
## Moscow      -3.46261171  2.182015808
## Oslo        -3.30598698  0.310053024
## Paris        1.41971350 -0.897598545
## Prague      -0.10900287  0.698041163
## Reykjavik   -4.70406435 -2.957197699
## Rome         5.38200124  0.293698723
## Sarajevo     0.16345193  0.319489453
## Sofia        0.41781097  0.795074460
## Stockholm   -3.14855331  0.005577557
## 
## $cos2
##                  Dim.1        Dim.2
## Amsterdam   0.02474831 9.037408e-01
## Athens      0.97830645 1.465844e-02
## Berlin      0.32789958 1.071347e-03
## Brussels    0.21639751 7.527801e-01
## Budapest    0.46337591 4.885264e-01
## Copenhagen  0.80588015 9.123692e-02
## Dublin      0.03411320 9.551775e-01
## Elsinki     0.95654320 1.253419e-02
## Kiev        0.41732984 5.737380e-01
## Krakow      0.64509341 3.117546e-01
## Lisbon      0.92554429 7.132255e-02
## London      0.00131785 9.824220e-01
## Madrid      0.93424771 2.753176e-02
## Minsk       0.84071389 1.552234e-01
## Moscow      0.71081284 2.822692e-01
## Oslo        0.97838231 8.605543e-03
## Paris       0.69481859 2.777373e-01
## Prague      0.01987080 8.148950e-01
## Reykjavik   0.71527677 2.826756e-01
## Rome        0.99549987 2.964543e-03
## Sarajevo    0.07819664 2.987590e-01
## Sofia       0.18627345 6.745387e-01
## Stockholm   0.92423563 2.900338e-06
## 
## $contrib
##                    Dim.1        Dim.2
## Amsterdam    0.022509389 4.425554e+00
## Athens      25.249412071 2.036899e+00
## Berlin       0.036216364 6.370885e-04
## Brussels     0.174118494 3.261117e+00
## Budapest     1.216057639 6.902625e+00
## Copenhagen   0.934709699 5.697475e-01
## Dublin       0.111569397 1.681947e+01
## Elsinki      7.120549993 5.023550e-01
## Kiev         1.281346111 9.484319e+00
## Krakow       0.692408290 1.801599e+00
## Lisbon      13.702914482 5.685231e+00
## London       0.001452098 5.828188e+00
## Madrid       7.218867870 1.145372e+00
## Minsk        4.582193987 4.554996e+00
## Moscow       5.240284554 1.120388e+01
## Oslo         4.776937527 2.262167e-01
## Paris        0.880944827 1.895907e+00
## Prague       0.005193057 1.146608e+00
## Reykjavik    9.671498999 2.057849e+01
## Rome        12.660033938 2.029817e-01
## Sarajevo     0.011676896 2.401960e-01
## Sofia        0.076296912 1.487539e+00
## Stockholm    4.332807405 7.320502e-05
## 
## $dist
##  Amsterdam      Athens      Berlin     Brussels   Budapest  Copenhagen  
##   1.4425652   7.6844809   0.5026994   1.3568214   2.4503985   1.6290316 
##     Dublin      Elsinki       Kiev      Krakow      Lisbon      London  
##   2.7355058   4.1269655   2.6504515   1.5670981   5.8201507   1.5877837 
##     Madrid       Minsk       Moscow       Oslo       Paris      Prague  
##   4.2046503   3.5313355   4.1070138   3.3423109   1.7031974   0.7732683 
##  Reykjavik        Rome    Sarajevo       Sofia   Stockholm  
##   5.5620667   5.3941521   0.5845155   0.9680646   3.2750633
res.pca$ind.sup
## $coord
##                      Dim.1       Dim.2
## Antwerp          0.5892648 -1.16201065
## Barcelona        5.9892460 -0.38329986
## Bordeaux         2.8501570 -0.73131707
## Edinburgh       -1.2889857 -2.34463780
## Frankfurt        0.3890032  0.15364874
## Geneva           0.3248580  0.17052566
## Genoa            5.8482798 -0.12707972
## Milan            3.1561321  1.55567808
## Palermo          7.2922522 -0.20543700
## Seville          7.8644835  0.25777733
## St. Petersburg  -4.0229276  1.58587572
## Zurich          -0.6082877 -0.05761394
## 
## $cos2
##                     Dim.1        Dim.2
## Antwerp         0.1954400 0.7599985442
## Barcelona       0.9938250 0.0040704547
## Bordeaux        0.9233629 0.0607919740
## Edinburgh       0.2296285 0.7597680759
## Frankfurt       0.3296074 0.0514219671
## Geneva          0.3639175 0.1002755755
## Genoa           0.9933376 0.0004690218
## Milan           0.7906782 0.1921006780
## Palermo         0.9689404 0.0007690083
## Seville         0.9975864 0.0010717650
## St. Petersburg  0.8295199 0.1289082379
## Zurich          0.6401597 0.0057428226
## 
## $dist
##        Antwerp       Barcelona        Bordeaux       Edinburgh  
##       1.3329189       6.0078239       2.9660781       2.6898945 
##      Frankfurt          Geneva           Genoa           Milan  
##       0.6775708       0.5385080       5.8678595       3.5494028 
##        Palermo         Seville  St. Petersburg          Zurich  
##       7.4082076       7.8739915       4.4170144       0.7602648
res.pca$ind$coord
##                   Dim.1        Dim.2
## Amsterdam    0.22693852 -1.371378702
## Athens       7.60067204  0.930375742
## Berlin      -0.28785832  0.016454075
## Brussels     0.63117358 -1.177217640
## Budapest     1.66802839  1.712697730
## Copenhagen  -1.46239513 -0.492056307
## Dublin      -0.50524137 -2.673496925
## Elsinki     -4.03629712  0.462039367
## Kiev        -1.71222008  2.007597607
## Krakow      -1.25865727  0.874989077
## Lisbon       5.59928833 -1.554345838
## London       0.05764006 -1.573766723
## Madrid       4.06406743  0.697664862
## Minsk       -3.23789748  1.391289730
## Moscow      -3.46261171  2.182015808
## Oslo        -3.30598698  0.310053024
## Paris        1.41971350 -0.897598545
## Prague      -0.10900287  0.698041163
## Reykjavik   -4.70406435 -2.957197699
## Rome         5.38200124  0.293698723
## Sarajevo     0.16345193  0.319489453
## Sofia        0.41781097  0.795074460
## Stockholm   -3.14855331  0.005577557
sort(round(res.pca$ind$contrib[,1],3))
##     London      Prague    Sarajevo   Amsterdam      Berlin       Sofia  
##       0.001       0.005       0.012       0.023       0.036       0.076 
##     Dublin     Brussels     Krakow       Paris  Copenhagen    Budapest  
##       0.112       0.174       0.692       0.881       0.935       1.216 
##       Kiev   Stockholm       Minsk        Oslo       Moscow     Elsinki 
##       1.281       4.333       4.582       4.777       5.240       7.121 
##     Madrid   Reykjavik        Rome      Lisbon      Athens  
##       7.219       9.671      12.660      13.703      25.249
sort(round(res.pca$ind$contrib[,2],3))
##  Stockholm      Berlin        Rome        Oslo    Sarajevo      Elsinki 
##       0.000       0.001       0.203       0.226       0.240       0.502 
## Copenhagen      Madrid      Prague       Sofia      Krakow       Paris  
##       0.570       1.145       1.147       1.488       1.802       1.896 
##     Athens     Brussels  Amsterdam       Minsk      Lisbon      London  
##       2.037       3.261       4.426       4.555       5.685       5.828 
##   Budapest        Kiev       Moscow     Dublin   Reykjavik  
##       6.903       9.484      11.204      16.819      20.578
sort(res.pca$ind$cos2)
##  [1] 2.900338e-06 1.071347e-03 1.317850e-03 2.964543e-03 8.605543e-03
##  [6] 1.253419e-02 1.465844e-02 1.987080e-02 2.474831e-02 2.753176e-02
## [11] 3.411320e-02 7.132255e-02 7.819664e-02 9.123692e-02 1.552234e-01
## [16] 1.862735e-01 2.163975e-01 2.777373e-01 2.822692e-01 2.826756e-01
## [21] 2.987590e-01 3.117546e-01 3.278996e-01 4.173298e-01 4.633759e-01
## [26] 4.885264e-01 5.737380e-01 6.450934e-01 6.745387e-01 6.948186e-01
## [31] 7.108128e-01 7.152768e-01 7.527801e-01 8.058802e-01 8.148950e-01
## [36] 8.407139e-01 9.037408e-01 9.242356e-01 9.255443e-01 9.342477e-01
## [41] 9.551775e-01 9.565432e-01 9.783065e-01 9.783823e-01 9.824220e-01
## [46] 9.954999e-01
fviz_pca_contrib(res.pca, choice = "ind" , axes = 1)
## Warning in fviz_pca_contrib(res.pca, choice = "ind", axes = 1): The
## function fviz_pca_contrib() is deprecated. Please use the function
## fviz_contrib() which can handle outputs of PCA, CA and MCA functions.

fviz_pca_contrib(res.pca, choice = "ind" , axes = 2)
## Warning in fviz_pca_contrib(res.pca, choice = "ind", axes = 2): The
## function fviz_pca_contrib() is deprecated. Please use the function
## fviz_contrib() which can handle outputs of PCA, CA and MCA functions.

fviz_cos2(res.pca)
## Warning in if (!element %in% c("row", "col", "var", "ind", "quanti.var", :
## the condition has length > 1 and only the first element will be used

res.pca$var$coord[1:23]
##  [1]  0.84245060  0.88428481  0.94505214  0.97388757  0.86985167
##  [6]  0.83331408  0.84416264  0.90924428  0.98562545  0.99162463
## [11]  0.95235673  0.87311910 -0.53135762 -0.45583250 -0.28731281
## [16]  0.09956500  0.45781159  0.54532195  0.50866195  0.40192442
## [21]  0.15253617 -0.08476471 -0.28941418
res.pca$var$cor
##               Dim.1       Dim.2
## January   0.8424506 -0.53135762
## February  0.8842848 -0.45583250
## March     0.9450521 -0.28731281
## April     0.9738876  0.09956500
## May       0.8698517  0.45781159
## June      0.8333141  0.54532195
## July      0.8441626  0.50866195
## August    0.9092443  0.40192442
## September 0.9856254  0.15253617
## October   0.9916246 -0.08476471
## November  0.9523567 -0.28941418
## December  0.8731191 -0.47286559
names(which.max(res.pca$var$cor[,1]))
## [1] "October"

La variable “October” est la plus corrélée avec le premier axe ( une corrélation de 0.991)

names(which.max(res.pca$var$cor[,2])) 
## [1] "June"

La variable “June” est la plus corrélée avec le 2ème axe ( une corrélation de 0.545)

res.pca$quanti.sup
## $coord
##                Dim.1       Dim.2
## Annual     0.9975483 -0.06845254
## Amplitude -0.3140756  0.94441398
## Latitude  -0.9099106 -0.21543731
## Longitude -0.3644584  0.64497259
## 
## $cor
##                Dim.1       Dim.2
## Annual     0.9975483 -0.06845254
## Amplitude -0.3140756  0.94441398
## Latitude  -0.9099106 -0.21543731
## Longitude -0.3644584  0.64497259
## 
## $cos2
##                Dim.1      Dim.2
## Annual    0.99510271 0.00468575
## Amplitude 0.09864347 0.89191777
## Latitude  0.82793735 0.04641323
## Longitude 0.13282993 0.41598964
res.pca$quali.sup
## $coord
##            Dim.1      Dim.2
## East  -1.0992214  1.3802437
## North -2.4435569 -0.9884068
## South  4.5618962  0.1373766
## West   0.4974918 -0.8574352
## 
## $cos2
##           Dim.1        Dim.2
## East  0.3797241 0.5987000663
## North 0.8499535 0.1390662460
## South 0.9981689 0.0009051878
## West  0.2323311 0.6901414045
## 
## $v.test
##            Dim.1      Dim.2
## East  -1.0812425  3.1502604
## North -2.4035900 -2.2559342
## South  3.5755516  0.2498407
## West   0.3394596 -1.3575510
## 
## $dist
##     East    North    South     West 
## 1.783820 2.650482 4.566079 1.032125 
## 
## $eta2
##          Dim 1     Dim 2
## Area 0.6787608 0.5461533

/Effectuer un habillage selon la variable catégorielle : Area/

plot(res.pca,choix='ind',habillage=17,cex=0.7)

/Realiser un biplot/

library(ade4)
## Warning: package 'ade4' was built under R version 3.2.3
## 
## Attaching package: 'ade4'
## 
## The following object is masked from 'package:FactoMineR':
## 
##     reconst
Xpca=dudi.pca(data[,-c(17)],scannf=F,scale=T,nf=2)
biplot(Xpca)

/Extraire les coordonnées des individus sur dim 1 et dim2 ( nommer respectivement PC1 et PC2)/

PC1 <- res.pca$ind$coord[,1]
PC2 <- res.pca$ind$coord[,2]

/Créer dataframe nommée PCs qui fait concaténer PC1 et PC2/

labs <- rownames(res.pca$ind$coord)
PCs <- data.frame(cbind(PC1,PC2))
rownames(PCs) <- rownames(res.pca$ind$coord)
attach(data)
colnames(data)
##  [1] "January"   "February"  "March"     "April"     "May"      
##  [6] "June"      "July"      "August"    "September" "October"  
## [11] "November"  "December"  "Annual"    "Amplitude" "Latitude" 
## [16] "Longitude" "Area"

/Nuage de points/

library(ggplot2)
  p1<-ggplot(PCs,aes(PC1,PC2,label=rownames(PCs)))+geom_point()
      p1

 p2<-ggplot(PCs,aes(x=PC1,y=PC2,label=rownames(PCs)))+geom_point()
      p2

cPC1 <- res.pca$quali.sup$coord[,1]
cPC2 <- res.pca$quali.sup$coord[,2]
clabs <- rownames(res.pca$quali.sup$coord)
cPCs <- data.frame(cbind(cPC1,cPC2))
rownames(cPCs) <- clabs
colnames(cPCs) <- colnames(PCs)
p <- ggplot() +  theme_bw(base_size = 20) 
p

p <- p + geom_text(data=PCs, aes(x=PC1,y=PC2,label=rownames(PCs)), size=4) 
p

vPC1 <- res.pca$var$coord[,1]
vPC2 <- res.pca$var$coord[,2]
vlabs <- rownames(res.pca$var$coord)
vPCs <- data.frame(cbind(vPC1,vPC2))
rownames(vPCs) <- vlabs
colnames(vPCs) <- colnames(PCs)

angle <- seq(-pi, pi, length = 50) 
angle
##  [1] -3.14159265 -3.01336438 -2.88513611 -2.75690784 -2.62867957
##  [6] -2.50045130 -2.37222302 -2.24399475 -2.11576648 -1.98753821
## [11] -1.85930994 -1.73108167 -1.60285339 -1.47462512 -1.34639685
## [16] -1.21816858 -1.08994031 -0.96171204 -0.83348377 -0.70525549
## [21] -0.57702722 -0.44879895 -0.32057068 -0.19234241 -0.06411414
## [26]  0.06411414  0.19234241  0.32057068  0.44879895  0.57702722
## [31]  0.70525549  0.83348377  0.96171204  1.08994031  1.21816858
## [36]  1.34639685  1.47462512  1.60285339  1.73108167  1.85930994
## [41]  1.98753821  2.11576648  2.24399475  2.37222302  2.50045130
## [46]  2.62867957  2.75690784  2.88513611  3.01336438  3.14159265
df <- data.frame(x = sin(angle), y = cos(angle)) 

df
##                x           y
## 1  -1.224606e-16 -1.00000000
## 2  -1.278772e-01 -0.99179001
## 3  -2.536546e-01 -0.96729486
## 4  -3.752670e-01 -0.92691676
## 5  -4.907176e-01 -0.87131870
## 6  -5.981105e-01 -0.80141362
## 7  -6.956826e-01 -0.71834935
## 8  -7.818315e-01 -0.62348980
## 9  -8.551428e-01 -0.51839257
## 10 -9.144126e-01 -0.40478334
## 11 -9.586679e-01 -0.28452759
## 12 -9.871818e-01 -0.15959990
## 13 -9.994862e-01 -0.03205158
## 14 -9.953791e-01  0.09602303
## 15 -9.749279e-01  0.22252093
## 16 -9.384684e-01  0.34536505
## 17 -8.865993e-01  0.46253829
## 18 -8.201723e-01  0.57211666
## 19 -7.402780e-01  0.67230089
## 20 -6.482284e-01  0.76144596
## 21 -5.455349e-01  0.83808810
## 22 -4.338837e-01  0.90096887
## 23 -3.151082e-01  0.94905575
## 24 -1.911586e-01  0.98155916
## 25 -6.407022e-02  0.99794539
## 26  6.407022e-02  0.99794539
## 27  1.911586e-01  0.98155916
## 28  3.151082e-01  0.94905575
## 29  4.338837e-01  0.90096887
## 30  5.455349e-01  0.83808810
## 31  6.482284e-01  0.76144596
## 32  7.402780e-01  0.67230089
## 33  8.201723e-01  0.57211666
## 34  8.865993e-01  0.46253829
## 35  9.384684e-01  0.34536505
## 36  9.749279e-01  0.22252093
## 37  9.953791e-01  0.09602303
## 38  9.994862e-01 -0.03205158
## 39  9.871818e-01 -0.15959990
## 40  9.586679e-01 -0.28452759
## 41  9.144126e-01 -0.40478334
## 42  8.551428e-01 -0.51839257
## 43  7.818315e-01 -0.62348980
## 44  6.956826e-01 -0.71834935
## 45  5.981105e-01 -0.80141362
## 46  4.907176e-01 -0.87131870
## 47  3.752670e-01 -0.92691676
## 48  2.536546e-01 -0.96729486
## 49  1.278772e-01 -0.99179001
## 50  1.224606e-16 -1.00000000
pv <- ggplot() + theme_bw(base_size = 20)
pv

pv <- pv + geom_path(aes(x, y), data = df, colour="grey70") 
pv

pv <- pv + geom_text(data=vPCs, aes(x=vPC1,y=vPC2,label=rownames(vPCs)), size=4) + xlab("PC1") + ylab("PC2")
pv

pv <- pv + geom_segment(data=vPCs, aes(x = 0, y = 0, xend = vPC1*0.9, yend = vPC2*0.9), arrow = arrow(length = unit(1/2, 'picas')), color = "grey30")
pv

library(gridExtra)
## Warning: package 'gridExtra' was built under R version 3.2.4
grid.arrange(p,pv,nrow=1)

CONCLUSION

        En effectuant la méthode de l'ACP , on a réussi à réduire l'information sur les changementS du températures  à partir de 35 individus et 17 variables en deux dimensions avec une précision de 98.3% de l'information totale.